Level sets of Gauss curvature in surfaces of constant mean curvature
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 104, page 1-26
- ISSN: 0041-8994
Access Full Article
topHow to cite
topLiang, Fei-Tsen. "Level sets of Gauss curvature in surfaces of constant mean curvature." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 1-26. <http://eudml.org/doc/108534>.
@article{Liang2000,
author = {Liang, Fei-Tsen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {1-26},
publisher = {Seminario Matematico of the University of Padua},
title = {Level sets of Gauss curvature in surfaces of constant mean curvature},
url = {http://eudml.org/doc/108534},
volume = {104},
year = {2000},
}
TY - JOUR
AU - Liang, Fei-Tsen
TI - Level sets of Gauss curvature in surfaces of constant mean curvature
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 1
EP - 26
LA - eng
UR - http://eudml.org/doc/108534
ER -
References
top- [1] H.S. Brascamp - E. LIEB, On extention of the Brunn-Minkowski and Prekoja-Leindler theorems, J. Funct. Anal., 11 (1976), pp. 366-389. Zbl0334.26009
- [2] L.A. Caffarelli - A. FRIEDMAN, Convexity of solutions of semilinear elliptic equations, Duke. Math. J., 52 (1985), pp. 31-456. Zbl0599.35065MR792181
- [3] J.T. Chen - W.H. Huang, Convexity of capillary surfaces in outer space, Invent. Math., 67 (1982), pp. 253-259. Zbl0496.76005MR665156
- [4] R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1982), pp. 439-460. Zbl0487.76012MR697648
- [5] R. Finn, Comparison Principles in Capillarity, Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, Springer-Verlag, 1988. Zbl0692.35006MR976235
- [6] H. Hopf, Lectures on Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, 1983. Zbl0526.53002MR707850
- [7] W.H. Huang, Superhamonicity of curvatures for surfaces of constant mean curvature, Pacific J. of Math., 152, no. 2 (1992), pp. 291-318. Zbl0767.53040MR1141797
- [8] W.H. Huang - CHUN-CHI LIN, Negatively Curved Sets in Surfaces of Constant Mean Curvature in R3, Arch. Rat. Mech. Anal., 141, no. 2 (1998), pp. 105-116. Zbl0941.53011MR1615516
- [9] N.J. Korevarr, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603-614. Zbl0481.35024MR703287
- [10] N.J. Korevarr - J.L. Lewis, Convex solutions to nonlinear elliptic equations having constant rank Hessians, Arch. Rat. Mech. Anal., 32 (1987), pp. 19-32. Zbl0624.35031
- [11] H. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), pp. 193-243. Zbl0586.53003MR815044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.