Level sets of Gauss curvature in surfaces of constant mean curvature

Fei-Tsen Liang

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 104, page 1-26
  • ISSN: 0041-8994

How to cite

top

Liang, Fei-Tsen. "Level sets of Gauss curvature in surfaces of constant mean curvature." Rendiconti del Seminario Matematico della Università di Padova 104 (2000): 1-26. <http://eudml.org/doc/108534>.

@article{Liang2000,
author = {Liang, Fei-Tsen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {1-26},
publisher = {Seminario Matematico of the University of Padua},
title = {Level sets of Gauss curvature in surfaces of constant mean curvature},
url = {http://eudml.org/doc/108534},
volume = {104},
year = {2000},
}

TY - JOUR
AU - Liang, Fei-Tsen
TI - Level sets of Gauss curvature in surfaces of constant mean curvature
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 104
SP - 1
EP - 26
LA - eng
UR - http://eudml.org/doc/108534
ER -

References

top
  1. [1] H.S. Brascamp - E. LIEB, On extention of the Brunn-Minkowski and Prekoja-Leindler theorems, J. Funct. Anal., 11 (1976), pp. 366-389. Zbl0334.26009
  2. [2] L.A. Caffarelli - A. FRIEDMAN, Convexity of solutions of semilinear elliptic equations, Duke. Math. J., 52 (1985), pp. 31-456. Zbl0599.35065MR792181
  3. [3] J.T. Chen - W.H. Huang, Convexity of capillary surfaces in outer space, Invent. Math., 67 (1982), pp. 253-259. Zbl0496.76005MR665156
  4. [4] R. Finn, Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1982), pp. 439-460. Zbl0487.76012MR697648
  5. [5] R. Finn, Comparison Principles in Capillarity, Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, Springer-Verlag, 1988. Zbl0692.35006MR976235
  6. [6] H. Hopf, Lectures on Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, 1983. Zbl0526.53002MR707850
  7. [7] W.H. Huang, Superhamonicity of curvatures for surfaces of constant mean curvature, Pacific J. of Math., 152, no. 2 (1992), pp. 291-318. Zbl0767.53040MR1141797
  8. [8] W.H. Huang - CHUN-CHI LIN, Negatively Curved Sets in Surfaces of Constant Mean Curvature in R3, Arch. Rat. Mech. Anal., 141, no. 2 (1998), pp. 105-116. Zbl0941.53011MR1615516
  9. [9] N.J. Korevarr, Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603-614. Zbl0481.35024MR703287
  10. [10] N.J. Korevarr - J.L. Lewis, Convex solutions to nonlinear elliptic equations having constant rank Hessians, Arch. Rat. Mech. Anal., 32 (1987), pp. 19-32. Zbl0624.35031
  11. [11] H. Wente, Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), pp. 193-243. Zbl0586.53003MR815044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.