A note on block triangular presentations of rings and finitistic dimension
W. D. Burgess; K. R. Fuller; A. Tonolo
Rendiconti del Seminario Matematico della Università di Padova (2001)
- Volume: 105, page 207-214
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBurgess, W. D., Fuller, K. R., and Tonolo, A.. "A note on block triangular presentations of rings and finitistic dimension." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 207-214. <http://eudml.org/doc/108550>.
@article{Burgess2001,
author = {Burgess, W. D., Fuller, K. R., Tonolo, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {block triangular presentations; finitistic dimensions; indecomposable projective modules; left Artinian rings; rings of block triangular matrices},
language = {eng},
pages = {207-214},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on block triangular presentations of rings and finitistic dimension},
url = {http://eudml.org/doc/108550},
volume = {105},
year = {2001},
}
TY - JOUR
AU - Burgess, W. D.
AU - Fuller, K. R.
AU - Tonolo, A.
TI - A note on block triangular presentations of rings and finitistic dimension
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 207
EP - 214
LA - eng
KW - block triangular presentations; finitistic dimensions; indecomposable projective modules; left Artinian rings; rings of block triangular matrices
UR - http://eudml.org/doc/108550
ER -
References
top- [1] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, Second Edition, Springer-Verlag, New York, 1992. Zbl0765.16001MR1245487
- [2] M. Auslander- I. Reiten, Applications of contravariantly finite subcategories, Adv. in Math., 86 (1991), pp. 111-152. Zbl0774.16006MR1097029
- [3] M. Auslander - S.O. Smalø, Preprojective modules over artin algebras, J. Algebra, 66 (1980), pp. 61-122. Zbl0477.16013MR591246
- [4] W.D. Burgess, The graded Cartan matrix and global dimension of O-relations algebras, Proc. Edinburgh Math. Soc., 30 (1987), pp. 351-362. Zbl0608.16028MR908442
- [5] F.U. Coelho - M.I. Platzeck, On artin rings whose idempotent ideals have finite projective dimension, preprint, 1999. Zbl1011.16011MR1831584
- [6] R.M. Fossum - P.A. Griffith - I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Math., 456, Springer-Verlag (1975). Zbl0303.18006MR389981
- [7] K.R. Fuller, The Cartan determinant and global dimension of Artinian rings, Azumaya algebras, actions, and modules (Bloomington, IN, 1998), pp. 51-72, Contemp. Math., 124, Amer. Math. Soc, Providence, RI, 1992. Zbl0746.16013MR1144028
- [8] K.R. Fuller - M. SAORÍN, On the finitistic dimension conjecture for artinian rings, Manuscripta Math., 74 (1992), pp. 117-132. Zbl0785.16004MR1147557
- [9] K.R. Goodearl - B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite-dimensional algebras, Algebras and modules, II (Geiranger, 1996), pp. 205-225, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998. Zbl0913.16006MR1648628
- [10] E.L. Green - B. HUISGEN-ZIMMERMANN, Finitistic dimension of artinian rings with vanishing radical cube, Math. Z., 206 (1991), pp. 505-526. Zbl0707.16002MR1100835
- [11] E.L. Green - E. KIRKMAN - J. KUZMANOVICH, Finitistic dimension of finite dimensional monomial algebras, J. Algebra, 136 (1991), pp. 37-50. Zbl0727.16003MR1085118
- [12] K. Igusa - D. Zacharia, Syzygy pairs in monomial algebras, Proc. Amer. Math. Soc., 108 (1990), pp. 601-604. Zbl0688.16032MR1031675
- [13] M.I. Platzeck, Artin rings with all idempotent ideals projective, Comm. Algebra, 24 (1996), pp. 2515-2533. Zbl0857.16012MR1393273
- [14] J.R. Rotman, An Introduction to Homological Algebra, Academic Press, Orlando, 1979. Zbl0441.18018MR538169
- [15] S.O. Smalø, Functorially finite subcategories over triangular matrix rings, Proc. Amer. Math. Soc., 111 (1991), pp. 651-656. Zbl0724.16003MR1028295
- [16] Y. Wang, Finitistic dimensions of semiprimary rings, Manuscripta Math., 81 (1993), pp. 79-87. Zbl0809.16007MR1247589
- [17] Y. Wang, Finitistic dimensions of serial-like rings, J. Pure Appl. Algebra, 96 (1994), pp. 81-96. Zbl0821.16007MR1297443
- [18] B. Zimmermann-Huisgen, Syzygies and homological dimensions over left serial rings. Methods in module theory (Colorado Springs, CO, 1991), pp. 161-174, Lecture Notes in Pure and Appl. Math., 140, Dekker, New York, 1993. Zbl0799.16008MR1203806
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.