A note on block triangular presentations of rings and finitistic dimension

W. D. Burgess; K. R. Fuller; A. Tonolo

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 105, page 207-214
  • ISSN: 0041-8994

How to cite

top

Burgess, W. D., Fuller, K. R., and Tonolo, A.. "A note on block triangular presentations of rings and finitistic dimension." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 207-214. <http://eudml.org/doc/108550>.

@article{Burgess2001,
author = {Burgess, W. D., Fuller, K. R., Tonolo, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {block triangular presentations; finitistic dimensions; indecomposable projective modules; left Artinian rings; rings of block triangular matrices},
language = {eng},
pages = {207-214},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on block triangular presentations of rings and finitistic dimension},
url = {http://eudml.org/doc/108550},
volume = {105},
year = {2001},
}

TY - JOUR
AU - Burgess, W. D.
AU - Fuller, K. R.
AU - Tonolo, A.
TI - A note on block triangular presentations of rings and finitistic dimension
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 207
EP - 214
LA - eng
KW - block triangular presentations; finitistic dimensions; indecomposable projective modules; left Artinian rings; rings of block triangular matrices
UR - http://eudml.org/doc/108550
ER -

References

top
  1. [1] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, Second Edition, Springer-Verlag, New York, 1992. Zbl0765.16001MR1245487
  2. [2] M. Auslander- I. Reiten, Applications of contravariantly finite subcategories, Adv. in Math., 86 (1991), pp. 111-152. Zbl0774.16006MR1097029
  3. [3] M. Auslander - S.O. Smalø, Preprojective modules over artin algebras, J. Algebra, 66 (1980), pp. 61-122. Zbl0477.16013MR591246
  4. [4] W.D. Burgess, The graded Cartan matrix and global dimension of O-relations algebras, Proc. Edinburgh Math. Soc., 30 (1987), pp. 351-362. Zbl0608.16028MR908442
  5. [5] F.U. Coelho - M.I. Platzeck, On artin rings whose idempotent ideals have finite projective dimension, preprint, 1999. Zbl1011.16011MR1831584
  6. [6] R.M. Fossum - P.A. Griffith - I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Math., 456, Springer-Verlag (1975). Zbl0303.18006MR389981
  7. [7] K.R. Fuller, The Cartan determinant and global dimension of Artinian rings, Azumaya algebras, actions, and modules (Bloomington, IN, 1998), pp. 51-72, Contemp. Math., 124, Amer. Math. Soc, Providence, RI, 1992. Zbl0746.16013MR1144028
  8. [8] K.R. Fuller - M. SAORÍN, On the finitistic dimension conjecture for artinian rings, Manuscripta Math., 74 (1992), pp. 117-132. Zbl0785.16004MR1147557
  9. [9] K.R. Goodearl - B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite-dimensional algebras, Algebras and modules, II (Geiranger, 1996), pp. 205-225, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998. Zbl0913.16006MR1648628
  10. [10] E.L. Green - B. HUISGEN-ZIMMERMANN, Finitistic dimension of artinian rings with vanishing radical cube, Math. Z., 206 (1991), pp. 505-526. Zbl0707.16002MR1100835
  11. [11] E.L. Green - E. KIRKMAN - J. KUZMANOVICH, Finitistic dimension of finite dimensional monomial algebras, J. Algebra, 136 (1991), pp. 37-50. Zbl0727.16003MR1085118
  12. [12] K. Igusa - D. Zacharia, Syzygy pairs in monomial algebras, Proc. Amer. Math. Soc., 108 (1990), pp. 601-604. Zbl0688.16032MR1031675
  13. [13] M.I. Platzeck, Artin rings with all idempotent ideals projective, Comm. Algebra, 24 (1996), pp. 2515-2533. Zbl0857.16012MR1393273
  14. [14] J.R. Rotman, An Introduction to Homological Algebra, Academic Press, Orlando, 1979. Zbl0441.18018MR538169
  15. [15] S.O. Smalø, Functorially finite subcategories over triangular matrix rings, Proc. Amer. Math. Soc., 111 (1991), pp. 651-656. Zbl0724.16003MR1028295
  16. [16] Y. Wang, Finitistic dimensions of semiprimary rings, Manuscripta Math., 81 (1993), pp. 79-87. Zbl0809.16007MR1247589
  17. [17] Y. Wang, Finitistic dimensions of serial-like rings, J. Pure Appl. Algebra, 96 (1994), pp. 81-96. Zbl0821.16007MR1297443
  18. [18] B. Zimmermann-Huisgen, Syzygies and homological dimensions over left serial rings. Methods in module theory (Colorado Springs, CO, 1991), pp. 161-174, Lecture Notes in Pure and Appl. Math., 140, Dekker, New York, 1993. Zbl0799.16008MR1203806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.