Weyl formula for quasi-elliptic pseudo-differential operators
Rendiconti del Seminario Matematico della Università di Padova (2001)
- Volume: 105, page 215-231
- ISSN: 0041-8994
Access Full Article
topHow to cite
topNicola, F.. "Weyl formula for quasi-elliptic pseudo-differential operators." Rendiconti del Seminario Matematico della Università di Padova 105 (2001): 215-231. <http://eudml.org/doc/108551>.
@article{Nicola2001,
author = {Nicola, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {215-231},
publisher = {Seminario Matematico of the University of Padua},
title = {Weyl formula for quasi-elliptic pseudo-differential operators},
url = {http://eudml.org/doc/108551},
volume = {105},
year = {2001},
}
TY - JOUR
AU - Nicola, F.
TI - Weyl formula for quasi-elliptic pseudo-differential operators
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 105
SP - 215
EP - 231
LA - eng
UR - http://eudml.org/doc/108551
ER -
References
top- [1] P. Boggiatto - E. BUZANO - L. RODINO, Global Hypoellipticity and Spectral Theory, Akademic Verlag, Berlin (1996). Zbl0878.35001MR1435282
- [2] J.B. Gil, Heat trace asymptotics for cone differential operators, PhD thesis, University of Potsdam (1998).
- [3] P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or Perish, Wilmington, Delaware (1974). Zbl0565.58035MR783634
- [4] G. Grubb, Parametrized pseudodifferential operators and geometric invariants, in «Microlocal Analysis and Spectral Theory», L. Rodino editor, KluwerDordrecht (1997), pp. 115-164. Zbl0873.35116MR1451392
- [5] G. Grubb - SEELEY R., Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math., 121 (1995), pp. 481-529. Zbl0851.58043MR1353307
- [6] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), pp. 367-397. Zbl0122.40702MR189060
- [7] B. Helffer - D. Robert, Comportement semi-classique du spectre des hamiltoniens quantiques hypoelliptiques, Ann. Scuola Norm. Sup. Pisa, Cl. Sc., 9 (1982), pp. 405-431. Zbl0507.35066MR681933
- [8] L. Hormander, The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin (1983- 1985). Zbl0601.35001MR717035
- [9] L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), pp. 193-218. Zbl0164.13201MR609014
- [10] C. Hunt - A. Piriou, Opérateurs pseudo-différentiels anisotropes d'ordre variable, C.R.A.S.Paris, Série A, 268 (1969), pp. 28-31. Zbl0176.39803MR248567
- [11] C. Hunt - A. Piriou, Majorations L2 et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d'ordre variable, C.R.A.S.Paris, Série A, 268 (1969), pp. 214-217. Zbl0165.43702MR248568
- [12] L. Maniccia - P. PANARESE, Eigenvalues asymptotics for a class of md-elliptic ψdo's on manifold with cylindrical exits, I, preprint, University of Bologna (1998). Zbl1223.58020
- [13] R. Melrose, The Atiyah-Patodi-Singer index theorem, A.K. Peters, Wellesley, MA (1993). Zbl0796.58050MR1348401
- [14] A. Mohamed, Comportement asymptotiques, avec estimation du rest, des valeurs propres d'une classe d'opérateurs pseudo-différentiels sur Rn, Math. Nach., 140 (1989), pp. 127-186. Zbl0689.35067MR1015393
- [15] C. Parenti, Operatori pseudo-differenziali su varietà fogliettate, Rend. Sem. Mat. Univ. Padova, 52 (1974), pp. 275-298. Zbl0361.58007MR650986
- [16] C. Parenti - F. Segala, Propagation and reflection of singularities for a class of evolution equations, Comm. Partial Differential Equations, 6 (1981), pp. 741-782. Zbl0496.35082MR623644
- [17] M.A. Shubin, Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin (1987). Zbl0616.47040MR883081
- [18] M.E. Taylor, Partial Differential Equations, II, Springer-Verlag, New-York (1995). Zbl0869.35003MR1395148
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.