Some remarks on global solutions to nonlinear dissipative mildly degenerate Kirchhoff strings

Marina Ghisi

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 106, page 185-205
  • ISSN: 0041-8994

How to cite

top

Ghisi, Marina. "Some remarks on global solutions to nonlinear dissipative mildly degenerate Kirchhoff strings." Rendiconti del Seminario Matematico della Università di Padova 106 (2001): 185-205. <http://eudml.org/doc/108562>.

@article{Ghisi2001,
author = {Ghisi, Marina},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {185-205},
publisher = {Seminario Matematico of the University of Padua},
title = {Some remarks on global solutions to nonlinear dissipative mildly degenerate Kirchhoff strings},
url = {http://eudml.org/doc/108562},
volume = {106},
year = {2001},
}

TY - JOUR
AU - Ghisi, Marina
TI - Some remarks on global solutions to nonlinear dissipative mildly degenerate Kirchhoff strings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 106
SP - 185
EP - 205
LA - eng
UR - http://eudml.org/doc/108562
ER -

References

top
  1. [1] A. Arosio, Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach spaces, proceedings of the «2nd workshop on functional-analytic methods in complex analysis» (Trieste, 1993), World Scientific, Singapore. MR1414220
  2. [2] E.H. De Brito, The damped elastic stretched string equation generalized: existence, uniqueness, regularity and stability, Applicable Analysis, 13 (1982), pp. 219-233. Zbl0458.35065MR663775
  3. [3] E.H. De Brito, Decay estimates for the generalized damped extensible string and beam equation, Nonlinear Analysis, 8 (1984), pp. 1489-1496. Zbl0524.35026MR769410
  4. [4] P. D'Ancona - S. Spagnolo, Nonlinear perturbations of the Kirchhoff equation, Comm. Pure Appl. Math., 47 (1994), pp. 1005-1029. Zbl0807.35093MR1283880
  5. [5] M. Ghisi, Global solutions to some nonlinear dissipative mildly degenerate Kirchhoff equations, Preprint Dip. Mat. Univ. Pisa N° 2.293.1099 (1998). Zbl1028.35113MR1961549
  6. [6] M. Ghisi - M. Gobbino, Global Existence for a Mildly Degenerate Dissipative Hyperbolic Equation of Kirchhoff Type, Preprint Dip. Mat. Univ. Pisa (1997). Zbl1070.34077
  7. [7] M. Hosoya - Y. Yamada, On some nonlinear wave equations II: global existence and energy decay of solutions, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 38 (1991), pp. 239-250. Zbl0783.35038MR1127082
  8. [8] R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differential Integral Equations, 8 (1995), pp. 607-616. Zbl0812.35081MR1306578
  9. [9] M. Nakao, A Difference Inequality and its Application to Nonlinear Evolution Equations, J. Math. Soc. Japan, 30 (1978), pp. 747-762. Zbl0388.35007MR513082
  10. [10] K. Nishihara, Global Existence and AsymptoticBehaviour of the Solution of Some Quasilinear Hyperbolic Equation with Linear Damping, Funkcial. Ekvac., 32 (1989), pp. 343-355. Zbl0702.35165MR1040163
  11. [11] K. Nishihara - Y. YAMADA, On Global Solutions of some Degenerate Quasilinear Hyperbolic Equations with Dissipative Terms, Funkcial. Ekvac., 33 (1990), pp. 151-159. Zbl0715.35053MR1065473
  12. [12] K. Ono, Global Existence and DecayProperties of Solutions of Some Mildly Degenerate Nonlinear Dissipative Kirchhoff Strings, Funkcial. Ekvac., 40 (1997), pp. 255-270. Zbl0891.35100MR1480278
  13. [13] K. Ono, Global Existence, Decay and Blowup ofSolutions for Some Mildly Degenerate Nonlinear Kirchhoff Strings, J. Diff. Eq., 137 (1997), pp. 273-301. Zbl0879.35110MR1456598
  14. [14] Y. Yamada, On some quasilinear wave equations with dissipative terms, Nagoya Math. J., 87 (1982), pp. 17-39. Zbl0501.35058MR676584
  15. [15] S. Spagnolo, The Cauchy problem for the Kirchhoff equation, Rend. Sem. Fis. Matem. di Milano, 62 (1992), pp. 17-51. Zbl0809.35061MR1293773
  16. [16] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics«, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967

NotesEmbed ?

top

You must be logged in to post comments.