Quasi-isomorphism and -representations for a class of Butler groups
H. Pat Goeters; Charles Megibben
Rendiconti del Seminario Matematico della Università di Padova (2001)
- Volume: 106, page 21-45
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGoeters, H. Pat, and Megibben, Charles. "Quasi-isomorphism and $\mathbb {Z}_{(2)}$-representations for a class of Butler groups." Rendiconti del Seminario Matematico della Università di Padova 106 (2001): 21-45. <http://eudml.org/doc/108565>.
@article{Goeters2001,
author = {Goeters, H. Pat, Megibben, Charles},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Butler groups; epimorphic images of finite rank completely decomposable groups; finite rank torsion-free Abelian groups; -groups; quasi-isomorphisms; vector space representations},
language = {eng},
pages = {21-45},
publisher = {Seminario Matematico of the University of Padua},
title = {Quasi-isomorphism and $\mathbb \{Z\}_\{(2)\}$-representations for a class of Butler groups},
url = {http://eudml.org/doc/108565},
volume = {106},
year = {2001},
}
TY - JOUR
AU - Goeters, H. Pat
AU - Megibben, Charles
TI - Quasi-isomorphism and $\mathbb {Z}_{(2)}$-representations for a class of Butler groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 106
SP - 21
EP - 45
LA - eng
KW - Butler groups; epimorphic images of finite rank completely decomposable groups; finite rank torsion-free Abelian groups; -groups; quasi-isomorphisms; vector space representations
UR - http://eudml.org/doc/108565
ER -
References
top- [1] D. Arnold, Representations of partially ordered sets and abehan groups, Contemporary Math., 87 (1989), pp. 91-109. Zbl0684.20041MR995268
- [2] D. Arnold - M. DUGAS, A survey of Butler groups and the role of representations, in Abelian Groups and Modules, Lecture Notes mPure and Applied Mathematics, 182, 1996. Zbl0869.20035MR1415619
- [3] D. Arnold - F. Richman - C. Vinsonhaler, Representations of posets and finite valuated groups, to appear in the Journal of Algebra. Zbl0784.20026
- [4] D. Arnold - C. VINSONHALER, Quasi-isomorphism invariants for a class of torston-free abelian groups, Houston J. Math., 15 (1989), pp 327-340. Zbl0695.20031MR1032393
- [5] D. Arnold - C. VINSONHALER, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc., 105 (1989), p. 327-340. Zbl0695.20031MR935102
- [6] D. Arnold - C. VINSONHALER, Duahty and invanants for Butler groups, Pacific J. Math., 148 (1991), pp 1-10. Zbl0752.20026MR1091526
- [7] D. Arnold - C. Vinsonhaler, Isomorphism invariants for Butler groups, Trans. Amer. Math. Soc., to appear in the Transactions of the AMS. Zbl0791.20061MR1040040
- [8] D. Arnold - C. Vinsonhaler, Quasi-isomorphism invariants for two classes of finite rank Butler groups, preprint. Zbl0791.20061MR1157997
- [9] D. Arnold - C. VINSONHALER, Finite rank Butler groups, in Abelian Groups, Lecture Notes in Pure and Applied Mathematics, 146, 1993. Zbl0804.20043
- [10] M.C.R. Butler, Torszon-free modules and diagrams of vector spaces, Proc London Math Soc, 18 (1968), pp. 635-652 Zbl0179.32603MR230767
- [11] L. Fuchs - C. Metelli, On a class of Butler groups, Manuscripta Math., 71 (1991), pp. 1-28. Zbl0765.20026MR1094735
- [12] H.P. Goeters - W. ULLERY, Butler groups and lattices of types, Comment. Math. Univ. Carolinae, 31 (1990), pp. 613-619. Zbl0717.20039MR1091358
- [13] H.P. Goeters - W. ULLERY, Quasi-summands of a certain class of Butler groups, in Abelian Groups, Lecture Notes in Pure and Applied Mathematics, 146 (1993), pp 167-174. Zbl0806.20043MR1217267
- [14] P. Hill - C. Megibben, The classification of certain Butler groups, to appear in the Journal of Algebra Zbl0809.20047MR1244926
- [15] W.Y. Lee, Co-diagonal Butler groups, Chinese J. Math.17 (1989), pp 259-271. Zbl0696.20046MR1036105
- [16] B. Jónsson, On direct decompositions of torsion-free abelian groups, Math. Scand., 7 (1959), pp. 361-371. Zbl0104.24505MR122872
- [17] P.D. Yom, A characterization of class of torsion-free abelian groups, preprmt Zbl0822.20055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.