The geometry of the third moment of exponential sums
- [1] Dept. of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 733-760
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJouve, Florent. "The geometry of the third moment of exponential sums." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 733-760. <http://eudml.org/doc/10858>.
@article{Jouve2008,
abstract = {We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over $\mathbf\{F\}_q$ of type $K(\nu ^2;q)$. We establish a connection between the sums considered and the number of $\mathbf\{F\}_q$-rational points on explicit smooth projective surfaces, one of which is a $K3$ surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the $60$’s .},
affiliation = {Dept. of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.},
author = {Jouve, Florent},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {third moment of Kloosterman sums; number of rational points on smooth projective surfaces},
language = {eng},
number = {3},
pages = {733-760},
publisher = {Université Bordeaux 1},
title = {The geometry of the third moment of exponential sums},
url = {http://eudml.org/doc/10858},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Jouve, Florent
TI - The geometry of the third moment of exponential sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 733
EP - 760
AB - We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over $\mathbf{F}_q$ of type $K(\nu ^2;q)$. We establish a connection between the sums considered and the number of $\mathbf{F}_q$-rational points on explicit smooth projective surfaces, one of which is a $K3$ surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the $60$’s .
LA - eng
KW - third moment of Kloosterman sums; number of rational points on smooth projective surfaces
UR - http://eudml.org/doc/10858
ER -
References
top- S. Ahlgren, K. Ono, Modularity of a certain Calabi-Yau threefold. Monatsh. Math. 129 (2000), no. 3, 177–190. Zbl0999.11031MR1746757
- M. Artin, Supersingular surfaces. Ann. Scient. Éc. Norm. Sup., 4e série, 7 (1974), 543–568. Zbl0322.14014MR371899
- A. O. L. Atkin, Note on a paper of Birch. J. London Math. Soc. 44 (1969). Zbl0239.10022MR237438
- W. Barth, C. Peters, A. van de Ven, Compact complex surfaces. Springer, Berlin-Heidelberg-New York, 1984. Zbl0718.14023MR749574
- F. Beukers, J. Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic -surfaces. Math. Ann. 271 (1985), 269–304. Zbl0539.14006MR783555
- B. J. Birch, How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc. 43 (1968) 57–60. Zbl0183.25503MR230682
- A. Calabri, R. Ferraro, Explicit resolutions of double point singularities of surfaces. Collect. Math. 53 (2002), no. 2, 99–131. Zbl1043.14007MR1913513
- P. Deligne, Cohomologie étale, SGA . Lectures Notes in Math. 569, Springer Verlag 1977. Zbl0349.14008MR463174
- P. Deligne, La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252. Zbl0456.14014MR601520
- L. Fu, D. Wan, -functions for symmetric products of Kloosterman sums. J. reine angew. Math. 589 (2005), 79–103. Zbl1165.11331MR2194679
- R. Hartshorne, Algebraic geometry. GTM 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
- B. Hunt, The geometry of some special arithmetic quotients. Lecture Notes in Math. 1637. Springer-Verlag, Berlin, 1996. Zbl0904.14025MR1438547
- H. Inose, T. Shioda, On singular surfaces. Complex analysis and algebraic geometry (eds Baily, W. and Shioda, T.), Cambridge (1977), 119-136. Zbl0374.14006MR441982
- K. Ireland, M. Rosen, A classical introduction to modern number theory, Second Edition, GTM 84, Springer-Verlag 1990. Zbl0712.11001MR1070716
- H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in Mathematics, 17, American Mathematical Society, 1997. Zbl0905.11023MR1474964
- A. J. de Jong, N. M. Katz, Monodromy and the Tate conjecture: Picard numbers and Mordell-Weil ranks in families. Israel J. Math. 120 (2000), part A, 47–79. Zbl1067.14504MR1815370
- N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies 116. Princeton University Press, Princeton, NJ, 1988 Zbl0675.14004MR955052
- D. H. Lehmer, E. Lehmer, On the cubes of Kloosterman sums. Acta Arith. 6 (1960), 15–22. Zbl0092.04701MR115976
- R. Livné, Cubic exponential sums and Galois representations . Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), 247–261, Contemp. Math. 67, Amer. Math. Soc., Providence, RI, (1987). Zbl0621.14019MR902596
- Yu. Manin, Cubic forms. Algebra, geometry, arithmetic. Second edition. North-Holland Mathematical Library, 4. North-Holland Publishing Co., Amsterdam, 1986. Zbl0582.14010MR833513
- L. J. Mordell, On Lehmer’s congruence associated with cubes of Kloosterman’s sums. J. London Math. Soc. 36 (1961), 335–339. Zbl0103.27301MR126421
- H. Salié, Über die Kloostermanschen Summen . Math. Zeit. 34 (1932), 91–109. Zbl0002.12801MR1545243
- T. W. Sederberg, Techniques for cubic algebraic surfaces. IEEE Comp. Graph and Appl., September 1990.
- J. Silverman, The arithmetic of elliptic curves. GTM 106, Springer-Verlag, 1986. Zbl0585.14026MR817210
- J. Silverman, Advanced topics in the arithmetic of elliptic curves, Second Edition, GTM 151, Springer-Verlag, 1999. Zbl0911.14015MR1312368
- H. P. F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field. Proc. Camb. Phil. Soc. 63 (1967), 55. Zbl0201.53702MR204414
- H. A. Verril, The -series of certain rigid Calabi-Yau threefolds. J. Number Theory 81 (2000), no. 2, 310–334. Zbl0971.14034MR1752257
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.