The geometry of the third moment of exponential sums

Florent Jouve[1]

  • [1] Dept. of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 733-760
  • ISSN: 1246-7405

Abstract

top
We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over F q of type K ( ν 2 ; q ) . We establish a connection between the sums considered and the number of F q -rational points on explicit smooth projective surfaces, one of which is a K 3 surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the 60 ’s .

How to cite

top

Jouve, Florent. "The geometry of the third moment of exponential sums." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 733-760. <http://eudml.org/doc/10858>.

@article{Jouve2008,
abstract = {We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over $\mathbf\{F\}_q$ of type $K(\nu ^2;q)$. We establish a connection between the sums considered and the number of $\mathbf\{F\}_q$-rational points on explicit smooth projective surfaces, one of which is a $K3$ surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the $60$’s .},
affiliation = {Dept. of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.},
author = {Jouve, Florent},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {third moment of Kloosterman sums; number of rational points on smooth projective surfaces},
language = {eng},
number = {3},
pages = {733-760},
publisher = {Université Bordeaux 1},
title = {The geometry of the third moment of exponential sums},
url = {http://eudml.org/doc/10858},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Jouve, Florent
TI - The geometry of the third moment of exponential sums
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 733
EP - 760
AB - We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over $\mathbf{F}_q$ of type $K(\nu ^2;q)$. We establish a connection between the sums considered and the number of $\mathbf{F}_q$-rational points on explicit smooth projective surfaces, one of which is a $K3$ surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the $60$’s .
LA - eng
KW - third moment of Kloosterman sums; number of rational points on smooth projective surfaces
UR - http://eudml.org/doc/10858
ER -

References

top
  1. S. Ahlgren, K. Ono, Modularity of a certain Calabi-Yau threefold. Monatsh. Math. 129 (2000), no. 3, 177–190. Zbl0999.11031MR1746757
  2. M. Artin, Supersingular K 3 surfaces. Ann. Scient. Éc. Norm. Sup., 4e série, 7 (1974), 543–568. Zbl0322.14014MR371899
  3. A. O. L. Atkin, Note on a paper of Birch. J. London Math. Soc. 44 (1969). Zbl0239.10022MR237438
  4. W. Barth, C. Peters, A. van de Ven, Compact complex surfaces. Springer, Berlin-Heidelberg-New York, 1984. Zbl0718.14023MR749574
  5. F. Beukers, J. Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K 3 -surfaces. Math. Ann. 271 (1985), 269–304. Zbl0539.14006MR783555
  6. B. J. Birch, How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc. 43 (1968) 57–60. Zbl0183.25503MR230682
  7. A. Calabri, R. Ferraro, Explicit resolutions of double point singularities of surfaces. Collect. Math. 53 (2002), no. 2, 99–131. Zbl1043.14007MR1913513
  8. P. Deligne, Cohomologie étale, SGA 4 1 2 . Lectures Notes in Math. 569, Springer Verlag 1977. Zbl0349.14008MR463174
  9. P. Deligne, La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252. Zbl0456.14014MR601520
  10. L. Fu, D. Wan, L -functions for symmetric products of Kloosterman sums. J. reine angew. Math. 589 (2005), 79–103. Zbl1165.11331MR2194679
  11. R. Hartshorne, Algebraic geometry. GTM 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
  12. B. Hunt, The geometry of some special arithmetic quotients. Lecture Notes in Math. 1637. Springer-Verlag, Berlin, 1996. Zbl0904.14025MR1438547
  13. H. Inose, T. Shioda, On singular K 3 surfaces. Complex analysis and algebraic geometry (eds Baily, W. and Shioda, T.), Cambridge (1977), 119-136. Zbl0374.14006MR441982
  14. K. Ireland, M. Rosen, A classical introduction to modern number theory, Second Edition, GTM 84, Springer-Verlag 1990. Zbl0712.11001MR1070716
  15. H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in Mathematics, 17, American Mathematical Society, 1997. Zbl0905.11023MR1474964
  16. A. J. de Jong, N. M. Katz, Monodromy and the Tate conjecture: Picard numbers and Mordell-Weil ranks in families. Israel J. Math. 120 (2000), part A, 47–79. Zbl1067.14504MR1815370
  17. N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies 116. Princeton University Press, Princeton, NJ, 1988 Zbl0675.14004MR955052
  18. D. H. Lehmer, E. Lehmer, On the cubes of Kloosterman sums. Acta Arith. 6 (1960), 15–22. Zbl0092.04701MR115976
  19. R. Livné, Cubic exponential sums and Galois representations . Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), 247–261, Contemp. Math. 67, Amer. Math. Soc., Providence, RI, (1987). Zbl0621.14019MR902596
  20. Yu. Manin, Cubic forms. Algebra, geometry, arithmetic. Second edition. North-Holland Mathematical Library, 4. North-Holland Publishing Co., Amsterdam, 1986. Zbl0582.14010MR833513
  21. L. J. Mordell, On Lehmer’s congruence associated with cubes of Kloosterman’s sums. J. London Math. Soc. 36 (1961), 335–339. Zbl0103.27301MR126421
  22. H. Salié, Über die Kloostermanschen Summen S ( u , v ; q ) . Math. Zeit. 34 (1932), 91–109. Zbl0002.12801MR1545243
  23. T. W. Sederberg, Techniques for cubic algebraic surfaces. IEEE Comp. Graph and Appl., September 1990. 
  24. J. Silverman, The arithmetic of elliptic curves. GTM 106, Springer-Verlag, 1986. Zbl0585.14026MR817210
  25. J. Silverman, Advanced topics in the arithmetic of elliptic curves, Second Edition, GTM 151, Springer-Verlag, 1999. Zbl0911.14015MR1312368
  26. H. P. F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field. Proc. Camb. Phil. Soc. 63 (1967), 55. Zbl0201.53702MR204414
  27. H. A. Verril, The L -series of certain rigid Calabi-Yau threefolds. J. Number Theory 81 (2000), no. 2, 310–334. Zbl0971.14034MR1752257

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.