On Elkies subgroups of -torsion points in elliptic curves defined over a finite field
Reynald Lercier[1]; Thomas Sirvent[2]
- [1] DGA/CÉLAR La Roche Marguerite F-35174 Bruz
- [2] IRMAR Université de Rennes 1 Campus de Beaulieu F-35042 Rennes
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 783-797
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLercier, Reynald, and Sirvent, Thomas. "On Elkies subgroups of $\ell $-torsion points in elliptic curves defined over a finite field." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 783-797. <http://eudml.org/doc/10860>.
@article{Lercier2008,
abstract = {As a subproduct of the Schoof-Elkies-Atkin algorithm to count points on elliptic curves defined over finite fields of characteristic $p$, there exists an algorithm that computes, for $\ell $ an Elkies prime, $\ell $-torsion points in an extension of degree $\ell -1$ at cost $\mathop \{\{\tilde\{O\}\}\}\nolimits (\ell \, \max (\ell , \log q)^2)$ bit operations in the favorable case where $\ell \le p/2$.We combine in this work a fast algorithm for computing isogenies due to Bostan, Morain, Salvy and Schost with the $p$-adic approach followed by Joux and Lercier to get an algorithm valid without any limitation on $\ell $ and $p$ but of similar complexity. For the sake of simplicity, we precisely state here the algorithm in the case of finite fields with characteristic $p\ge 5$. We give experiment results too.},
affiliation = {DGA/CÉLAR La Roche Marguerite F-35174 Bruz; IRMAR Université de Rennes 1 Campus de Beaulieu F-35042 Rennes},
author = {Lercier, Reynald, Sirvent, Thomas},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {783-797},
publisher = {Université Bordeaux 1},
title = {On Elkies subgroups of $\ell $-torsion points in elliptic curves defined over a finite field},
url = {http://eudml.org/doc/10860},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Lercier, Reynald
AU - Sirvent, Thomas
TI - On Elkies subgroups of $\ell $-torsion points in elliptic curves defined over a finite field
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 783
EP - 797
AB - As a subproduct of the Schoof-Elkies-Atkin algorithm to count points on elliptic curves defined over finite fields of characteristic $p$, there exists an algorithm that computes, for $\ell $ an Elkies prime, $\ell $-torsion points in an extension of degree $\ell -1$ at cost $\mathop {{\tilde{O}}}\nolimits (\ell \, \max (\ell , \log q)^2)$ bit operations in the favorable case where $\ell \le p/2$.We combine in this work a fast algorithm for computing isogenies due to Bostan, Morain, Salvy and Schost with the $p$-adic approach followed by Joux and Lercier to get an algorithm valid without any limitation on $\ell $ and $p$ but of similar complexity. For the sake of simplicity, we precisely state here the algorithm in the case of finite fields with characteristic $p\ge 5$. We give experiment results too.
LA - eng
UR - http://eudml.org/doc/10860
ER -
References
top- E.R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, 1968. Zbl0988.94521MR238597
- A. Bostan, F. Morain, B. Salvy, É. Schost, Fast algorithms for computing isogenies between elliptic curves. Mathematics of Computation 77(263) (July 2008), 1755–1778. Zbl1200.11097MR2398793
- R.P. Brent, F.G. Gustavson, D.Y.Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants. Journal of Algorithms 1 (1980), 259–295. Zbl0475.65018MR604867
- H. CohenOn the coefficients of the transformation polynomials for the elliptic modular function. Math. Proc. Cambridge Philos. Soc. 95 (1984), 389–402. Zbl0541.10026MR755826
- J.-M. Couveignes, Computing -isogenies with the -torsion. In Proc. of the 2nd Algorithmic Number Theory Symposium (ANTS-II), volume 1122, pages 59–65, 1996. Zbl0903.11030MR1446498
- J.-M. Couveignes, R. Lercier, Elliptic periods for finite fields. arXiv:0802.0165, 2008. To appear in Finite Fields and their Applications. Zbl1216.11106MR2468989
- J.-M. Couveignes, R. Lercier, Galois invariant smoothness basis. Series on number theory and its application 5 (2008), 154–179. Zbl1151.14311MR2484053
- J.-L. Dornstetter, On the equivalence between Berlekamp’s and Euclid’s algorithms. IEEE Transactions on Information Theory 33(3) (1987), 428–431. Zbl0633.94019MR885401
- A. Enge, Computing modular polynomials in quasi-linear time. arXiv:0704.3177, 2007. To appear in Mathematics of Computation. Zbl1215.11121
- S.D. Galbraith, F. Hess, N.P. Smart, Extending the GHS Weil Descent Attack. In Proc. of Advances in Cryptology – Eurocrypt’2002, volume 2332, pages 29–44, 2002. Zbl1055.94013MR1975526
- A. Joux, R. Lercier, Counting points on elliptic curves in medium characteristic. Cryptology ePrint Archive 2006/176, 2006.
- R. Lercier, Computing isogenies in GF. In H. Cohen, editor, Algorithmic Number Theory: Second International Symposium, ANTS-II, volume 1122 of LNCS, pages 197–212. Springer Berlin / Heidelberg, May 1996. Zbl0911.11029MR1446512
- R. Lidl, H. Niederreiter, Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1983. Zbl0554.12010MR746963
- J.L. Massey, Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory 15(1) (1969), 122–127. Zbl0167.18101MR242556
- V.Y. Pan, New techniques for the computation of linear recurrence coefficients. Finite Fields and Their Applications 6(1) (2000), 93–118. Zbl0978.65130MR1738216
- R. Schoof, Counting points on elliptic curves over finite fields. Journal de théorie des nombres de Bordeaux 7(1) (1995), 219–254. Zbl0852.11073MR1413578
- V. Shoup, Removing Randomness from Computational Number Theory. PhD thesis, University of Winsconsin, 1989.
- J.H. SilvermanThe arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-Verlag, 1986. Corrected reprint of the 1986 original. Zbl0585.14026MR1329092
- N.P. Smart, An Analysis of Goubin’s Refined Power Analysis Attack. In Proc. of the 5th Workshop on Cryptographic Hardware and Embedded Systems (CHES’2003), volume 2779, pages 281–290, 2003. Zbl1274.94116
- J. Vélu, Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris 273 (1971), 238–241. Série A. Zbl0225.14014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.