Small almost free modules with prescribed topological endomorphism rings
A. L. S. Corner; Rüdiger Göbel
Rendiconti del Seminario Matematico della Università di Padova (2003)
- Volume: 109, page 217-234
- ISSN: 0041-8994
Access Full Article
topHow to cite
topCorner, A. L. S., and Göbel, Rüdiger. "Small almost free modules with prescribed topological endomorphism rings." Rendiconti del Seminario Matematico della Università di Padova 109 (2003): 217-234. <http://eudml.org/doc/108600>.
@article{Corner2003,
author = {Corner, A. L. S., Göbel, Rüdiger},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {realization of topological rings as endomorphism rings; -free Abelian groups; direct sums; pathological Abelian groups; endomorphisms; modules over commutative rings},
language = {eng},
pages = {217-234},
publisher = {Seminario Matematico of the University of Padua},
title = {Small almost free modules with prescribed topological endomorphism rings},
url = {http://eudml.org/doc/108600},
volume = {109},
year = {2003},
}
TY - JOUR
AU - Corner, A. L. S.
AU - Göbel, Rüdiger
TI - Small almost free modules with prescribed topological endomorphism rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 109
SP - 217
EP - 234
LA - eng
KW - realization of topological rings as endomorphism rings; -free Abelian groups; direct sums; pathological Abelian groups; endomorphisms; modules over commutative rings
UR - http://eudml.org/doc/108600
ER -
References
top- [1] R. BAER, Abelian groups without elements of finite order, Duke Math. J., 3 (1937), pp. 68-122. Zbl0016.20303MR1545974JFM63.0074.02
- [2] A. BIRTZ, Sur des décompositions directes paradoxales de groupes abéliens sans torsion, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 358-361. Zbl0517.20029MR722630
- [3] A. L. S. CORNER, Every countable reduced torsion-free ring is an endomorphisms ring, Proc. London Math. Soc., 13 (1963), pp. 687-710. Zbl0116.02403MR153743
- [4] A. L. S. CORNER, Endomorphisms rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra 1965 (Gordon and Breach, New York, 1967), pp. 59-69. Zbl0178.02303
- [5] A. L. S. CORNER, Additive categories and a theorem of W. G. Leavitt, Bull. Amer. Math. Soc., 75 (1969), pp. 78-82. Zbl0188.08502MR238903
- [6] A. L. S. CORNER, On the existence of very decomposable abelian groups, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 354-357. MR722629
- [7] A. L. S. CORNER - R. GÖBEL, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. Zbl0562.20030MR779399
- [8] M. DUGAS - R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. Zbl0506.16022MR670040
- [9] M. DUGAS - R. GÖBEL, Every cotorsion-free algebra is an endomorphism algebra, Math. Zeitschr., 181 (1982), pp. 451-470. Zbl0501.16031MR682667
- [10] P. C. EKLOF, Set theoretic methods in homological algebra and abelian groups, Les Presses de l’Université de Montréal, Montreal 1980. Zbl0488.03029MR565449
- [11] K. EDA, Cardinal restrictions for preradicals, Abelian Group Theory, Contemporary Math. 87, Providence, 1989, pp. 277-283. Zbl0687.20049MR995283
- [12] P. EKLOF - A. MEKLER, Almost Free Modules, Set-theoretic Methods, NorthHolland, 1990. Zbl0718.20027MR1055083
- [13] L. FUCHS, Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973.
- [14] R. GÖBEL, Some combinatorial principles for solving algebraic problems, Infinite length modules, Trends in Mathematics, Birkhäuser Verlag, Basel, 2000, pp. 107-127. Zbl0985.20047MR1789212
- [15] R. GÖBEL - S. SHELAH, Indecomposable almost free modules—the local case, Canadian J. Math., 50 (4) (1998), pp. 719-738. Zbl0959.20049MR1638607
- [16] R. GÖBEL - S. SHELAH, Endomorphism rings of modules whose cardinality is cofinal to v, Abelian groups, module theory, and topology, Marcel Dekker, New York, 1998, pp. 235-248. Zbl0940.16016MR1651170
- [17] P GRIFFITH, ]n-free abelian groups, Quart. J. Math. (2), 23 (72), pp. 417-425. Zbl0274.20068MR325804
- [18] T. JECH, Set theory, Academic Press, New York, 1978. Zbl0419.03028MR506523
- [19] S. SHELAH, On uncountable abelian groups, Israel J. Math., 32 (1979), pp. 311-330. Zbl0412.20047MR571086
- [20] S. SHELAH, On endo-rigid strongly ]1-free abelian groups in ]1 , Israel J. Math., 40 (1981), pp. 291-295. Zbl0501.03015MR654584
- [21] S. SHELAH, A combinatorial theorem and endomorphism rings of abelian groups II, Abelian Groups and Modules (R. Göbel, C. Metelli, A. Orsatti and L. Salce, eds.), CISM Courses and Lectures 287, Springer-Verlag, 1984, pp. 37-86. Zbl0581.20052MR789808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.