Algebraic sum of unbounded normal operators and the square root problem of Kato

Toka Diagana

Rendiconti del Seminario Matematico della Università di Padova (2003)

  • Volume: 110, page 269-275
  • ISSN: 0041-8994

How to cite

top

Diagana, Toka. "Algebraic sum of unbounded normal operators and the square root problem of Kato." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 269-275. <http://eudml.org/doc/108619>.

@article{Diagana2003,
author = {Diagana, Toka},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {269-275},
publisher = {Seminario Matematico of the University of Padua},
title = {Algebraic sum of unbounded normal operators and the square root problem of Kato},
url = {http://eudml.org/doc/108619},
volume = {110},
year = {2003},
}

TY - JOUR
AU - Diagana, Toka
TI - Algebraic sum of unbounded normal operators and the square root problem of Kato
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 269
EP - 275
LA - eng
UR - http://eudml.org/doc/108619
ER -

References

top
  1. [1] P. AUSHER - S. HOFMANN - A. MCINTOSH - P. TCHAMITCHIAN, The Kato Square Root Problem for Higher Order Elliptic Operators and Systems on Rn , J. Evol. Eq., 1, No. 4 (2001), pp. 361-385. Zbl1019.35029MR1877264
  2. [2] A. BIVAR-WEINHOLTZ - M. LAPIDUS, Product Formula for Resolvents of Normal Operator and the Modified Feynman Integral, Proc. Amer. Math. Soc., 110, No. 2 (1990). Zbl0718.47023MR1013964
  3. [3] H. BRÉZIS - T. KATO, Remarks on the Schrödinger Operator with Singular Complex Potentials, J. Math. Pures Appl., 58 (1979), pp. 137-151. Zbl0408.35025MR539217
  4. [4] T. DIAGANA, Sommes d’opérateurs et conjecture de Kato-McIntosh, C. R. Acad. Sci. Paris, t. 330, Série I (2000), pp. 461-464. Zbl0951.47001MR1756959
  5. [5] T. DIAGANA, Schrödinger operators with a singular potential, Int. J. MathMath. Sci., 29, No. 6 (2002), pp. 371-373. Zbl0997.35010MR1897865
  6. [6] T. DIAGANA, Quelques remarques sur l’opérateur de Schödinger avec un potentiel complexe singulier particulier, Bull. Belgian. Math. Soc., 9 (2002), pp. 293-298. Zbl1040.35017MR2017083
  7. [7] T. DIAGANA, An application to Kato’s square root problem, Int. J. MathMath. Sci. Vol., 9, No. 3 (2002), pp. 179-181. Zbl1001.47021MR1888351
  8. [8] T. DIAGANA, A Generalization related to Schrödinger operators with a singular potential, Int. J. Math-Math. Sci., 29, No. 10 (2002), pp. 609-611. Zbl1085.35051MR1900505
  9. [9] T. KATO, Perturbation theory for linear operators, New york (1966). Zbl0148.12601MR203473
  10. [10] J. L. LIONS, Espace intermédiaires entre espaces Hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumanie (N.S), 2 (50) (1958), pp. 419-432. Zbl0097.09501MR151829
  11. [11] J. L. LIONS, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan., 14 (2) (1962). Zbl0108.11202
  12. [12] A. PAZY, Semigroups of linear operators and application to partial differential equations, Springer-Verlag, New York (1983). Zbl0516.47023MR710486
  13. [13] W. RUDIN, Functional analysis, Tata McGraw-Hill, New Delhi (1974). Zbl0253.46001MR365062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.