Algebraic sum of unbounded normal operators and the square root problem of Kato
Rendiconti del Seminario Matematico della Università di Padova (2003)
- Volume: 110, page 269-275
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDiagana, Toka. "Algebraic sum of unbounded normal operators and the square root problem of Kato." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 269-275. <http://eudml.org/doc/108619>.
@article{Diagana2003,
author = {Diagana, Toka},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {269-275},
publisher = {Seminario Matematico of the University of Padua},
title = {Algebraic sum of unbounded normal operators and the square root problem of Kato},
url = {http://eudml.org/doc/108619},
volume = {110},
year = {2003},
}
TY - JOUR
AU - Diagana, Toka
TI - Algebraic sum of unbounded normal operators and the square root problem of Kato
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 269
EP - 275
LA - eng
UR - http://eudml.org/doc/108619
ER -
References
top- [1] P. AUSHER - S. HOFMANN - A. MCINTOSH - P. TCHAMITCHIAN, The Kato Square Root Problem for Higher Order Elliptic Operators and Systems on Rn , J. Evol. Eq., 1, No. 4 (2001), pp. 361-385. Zbl1019.35029MR1877264
- [2] A. BIVAR-WEINHOLTZ - M. LAPIDUS, Product Formula for Resolvents of Normal Operator and the Modified Feynman Integral, Proc. Amer. Math. Soc., 110, No. 2 (1990). Zbl0718.47023MR1013964
- [3] H. BRÉZIS - T. KATO, Remarks on the Schrödinger Operator with Singular Complex Potentials, J. Math. Pures Appl., 58 (1979), pp. 137-151. Zbl0408.35025MR539217
- [4] T. DIAGANA, Sommes d’opérateurs et conjecture de Kato-McIntosh, C. R. Acad. Sci. Paris, t. 330, Série I (2000), pp. 461-464. Zbl0951.47001MR1756959
- [5] T. DIAGANA, Schrödinger operators with a singular potential, Int. J. MathMath. Sci., 29, No. 6 (2002), pp. 371-373. Zbl0997.35010MR1897865
- [6] T. DIAGANA, Quelques remarques sur l’opérateur de Schödinger avec un potentiel complexe singulier particulier, Bull. Belgian. Math. Soc., 9 (2002), pp. 293-298. Zbl1040.35017MR2017083
- [7] T. DIAGANA, An application to Kato’s square root problem, Int. J. MathMath. Sci. Vol., 9, No. 3 (2002), pp. 179-181. Zbl1001.47021MR1888351
- [8] T. DIAGANA, A Generalization related to Schrödinger operators with a singular potential, Int. J. Math-Math. Sci., 29, No. 10 (2002), pp. 609-611. Zbl1085.35051MR1900505
- [9] T. KATO, Perturbation theory for linear operators, New york (1966). Zbl0148.12601MR203473
- [10] J. L. LIONS, Espace intermédiaires entre espaces Hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumanie (N.S), 2 (50) (1958), pp. 419-432. Zbl0097.09501MR151829
- [11] J. L. LIONS, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan., 14 (2) (1962). Zbl0108.11202
- [12] A. PAZY, Semigroups of linear operators and application to partial differential equations, Springer-Verlag, New York (1983). Zbl0516.47023MR710486
- [13] W. RUDIN, Functional analysis, Tata McGraw-Hill, New Delhi (1974). Zbl0253.46001MR365062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.