Ideals with maximal local cohomology modules

Enrico Sbarra

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 111, page 265-275
  • ISSN: 0041-8994

How to cite

top

Sbarra, Enrico. "Ideals with maximal local cohomology modules." Rendiconti del Seminario Matematico della Università di Padova 111 (2004): 265-275. <http://eudml.org/doc/108632>.

@article{Sbarra2004,
author = {Sbarra, Enrico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {265-275},
publisher = {Seminario Matematico of the University of Padua},
title = {Ideals with maximal local cohomology modules},
url = {http://eudml.org/doc/108632},
volume = {111},
year = {2004},
}

TY - JOUR
AU - Sbarra, Enrico
TI - Ideals with maximal local cohomology modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 111
SP - 265
EP - 275
LA - eng
UR - http://eudml.org/doc/108632
ER -

References

top
  1. [1] A. BIGATTI, Upper bounds for the Betti numbers of a given Hilbert function, Communications in Algebra, 21 (7) (1993), pp. 2317-2334. Zbl0817.13007MR1218500
  2. [2] M. BRODMANN - R. SHARP, Local Cohomology, Cambridge University Press, Cambridge, 1998. Zbl0903.13006MR1613627
  3. [3] W. BRUNS - J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1998. Zbl0909.13005MR1251956
  4. [4] A. CAPANI - G. NIESI - L. ROBBIANO, CoCoA, a system for doing Computations in Commutative Algebra, Available via anonymous ftp from: cocoa.dima.unige.it Zbl0920.68060
  5. [5] A. CONCA - J. HERZOG - T. HIBI, Rigid resolutions and big Betti numbers, Preprint 2003. Zbl1080.13008MR2099124
  6. [6] D. EISENBUD, Commutative Algebra, Springer-Verlag, New York, 1995. Zbl0819.13001MR1322960
  7. [7] J. HERZOG - T. HIBI, COMPONENTWISE LINEAR IDEALS, Nagoya Math. J., 153 (1999), pp. 141-153. Zbl0930.13018MR1684555
  8. [8] H. HULETT, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Communications in Algebra, 21 (7) (1993), pp. 2335-2350. Zbl0817.13006MR1218501
  9. [9] J. HERZOG - E. SBARRA, Sequentially Cohen-Macaulay modules and local cohomology, to appear in Proceedings of the Conference of the International Colloquium on Algebra, Arithmetic and Geometry, TIFR, Mumbai, January 4-12, 2000. Zbl1072.13504MR1940671
  10. [10] K. PARDUE, Deformation classes of graded modules and maximal Betti numbers, Illinois Journal of Mathematics, 40 (4) (Winter 1996), pp. 564-585. Zbl0903.13004MR1415019
  11. [11] E. SBARRA, Upper Bounds for local cohomology for rings with given Hilbert function, Communications in Algebra, 29 (12) (2001), pp. 5383-5409. Zbl1097.13516MR1872238
  12. [12] E. SBARRA, On the structure of Ext groups of strongly stable ideals, Geometric and combinatorial aspects of commutative algebra, Lect. Notes in Pure and Applied Mathematics, 217, Dekker 2001, pp. 345-352. Zbl0986.13012MR1824241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.