Large integer polynomials in several variables

A. Dubickas

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 165-172
  • ISSN: 0041-8994

How to cite

top

Dubickas, A.. "Large integer polynomials in several variables." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 165-172. <http://eudml.org/doc/108641>.

@article{Dubickas2004,
author = {Dubickas, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {165-172},
publisher = {Seminario Matematico of the University of Padua},
title = {Large integer polynomials in several variables},
url = {http://eudml.org/doc/108641},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Dubickas, A.
TI - Large integer polynomials in several variables
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 165
EP - 172
LA - eng
UR - http://eudml.org/doc/108641
ER -

References

top
  1. [1] F. AMOROSO, Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris, 321 (1995), pp. 11-14. Zbl0857.11007MR1340074
  2. [2] F. AMOROSO, Algebraic numbers close to 1 and variants of Mahler’s measure, J. Number Theory, 60 (1996), pp. 80-96. Zbl0866.11060MR1405727
  3. [3] F. AMOROSO, Algebraic numbers close to 1: results and methods, in: Number Theory, Tiruchirapalli, 1996 (V.K. Murthy, M. Waldschmidt eds.), Contemporary Mathematics 210, Amer. Math. Soc., Providence, RI, 1998, pp. 305-316. Zbl0892.11023MR1478500
  4. [4] F. AMOROSO, Upper bounds for the resultant and diophantine applications, in: Number Theory: Diophantine, Computational and Algebraic Aspects, Eger, 1996 (K. Györy, A. Pethö, V.T. Sós eds.), Walter de Gruyter, Berlin, 1998, pp. 23-36. Zbl0910.11029MR1628830
  5. [5] F. AMOROSO - S. DAVID, Minoration de la hauteur normalisée des hypersurfaces, Acta Arith., 92 (2000), pp. 339-366. Zbl0948.11025MR1760242
  6. [6] F. AMOROSO - M. MIGNOTTE, Upper bounds for the coefficients of irreducible integer polynomials in several variables, Acta Arith., 99 (2001), pp. 1-12. Zbl0978.11007MR1845359
  7. [7] Y. BUGEAUD, Algebraic numbers close to 1 in non-archimedean metrics, The Ramanujan J., 2 (1998), pp. 449-457. Zbl0918.11039MR1665321
  8. [8] A. DUBICKAS, On algebraic numbers close to 1, Bull. Australian Math. Soc., 58 (1998), pp. 423-434. Zbl0927.11050MR1662183
  9. [9] A. DUBICKAS, On certain geometric mean of the values of a polynomial, Liet. Matem. Rink., 40 (2000), pp. 17-27. Zbl0990.11062MR1801782
  10. [10] A. DUBICKAS, Three problems for polynomials of small measure, Acta Arith., 98 (2001), pp. 279-292. Zbl0972.11102MR1829627
  11. [11] G. EVEREST - T. WARD, Heights of polynomials and entropy in algebraic dynamics, London, Springer, 1999. Zbl0919.11064MR1700272
  12. [12] K. MAHLER, On the zeros of the derivative of a polynomial, Proc. Roy. Soc. London, Ser. A, 264 (1961), pp. 145-154. Zbl0109.25005MR133437
  13. [13] M. MIGNOTTE, On algebraic integers of small measure, Colloq. Math. Soc. János Bolyai, 34 (1981), pp. 1069-1077. Zbl0543.12002MR781176
  14. [14] M. MIGNOTTE, An inequality about irreducible factors of integer polynomials, J. Number Theory, 30 (1988), pp. 156-166. Zbl0648.12002MR961913
  15. [15] M. MIGNOTTE - M. WALDSCHMIDT, On algebraic numbers of small height: linear forms in one logarithm, J. Number Theory, 47 (1994), pp. 43-62. Zbl0801.11033MR1273455
  16. [16] A. SCHINZEL, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications 77, Cambridge, Cambridge University Press, 2000. Zbl0956.12001MR1770638
  17. [17] W. SCHMIDT, Diophantine approximation, Lecture Notes in Mathematics 785, Berlin-Heidelberg-New York, Springer, 1980. Zbl0421.10019MR568710

NotesEmbed ?

top

You must be logged in to post comments.