Large integer polynomials in several variables

A. Dubickas

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 165-172
  • ISSN: 0041-8994

How to cite

top

Dubickas, A.. "Large integer polynomials in several variables." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 165-172. <http://eudml.org/doc/108641>.

@article{Dubickas2004,
author = {Dubickas, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {165-172},
publisher = {Seminario Matematico of the University of Padua},
title = {Large integer polynomials in several variables},
url = {http://eudml.org/doc/108641},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Dubickas, A.
TI - Large integer polynomials in several variables
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 165
EP - 172
LA - eng
UR - http://eudml.org/doc/108641
ER -

References

top
  1. [1] F. AMOROSO, Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris, 321 (1995), pp. 11-14. Zbl0857.11007MR1340074
  2. [2] F. AMOROSO, Algebraic numbers close to 1 and variants of Mahler’s measure, J. Number Theory, 60 (1996), pp. 80-96. Zbl0866.11060MR1405727
  3. [3] F. AMOROSO, Algebraic numbers close to 1: results and methods, in: Number Theory, Tiruchirapalli, 1996 (V.K. Murthy, M. Waldschmidt eds.), Contemporary Mathematics 210, Amer. Math. Soc., Providence, RI, 1998, pp. 305-316. Zbl0892.11023MR1478500
  4. [4] F. AMOROSO, Upper bounds for the resultant and diophantine applications, in: Number Theory: Diophantine, Computational and Algebraic Aspects, Eger, 1996 (K. Györy, A. Pethö, V.T. Sós eds.), Walter de Gruyter, Berlin, 1998, pp. 23-36. Zbl0910.11029MR1628830
  5. [5] F. AMOROSO - S. DAVID, Minoration de la hauteur normalisée des hypersurfaces, Acta Arith., 92 (2000), pp. 339-366. Zbl0948.11025MR1760242
  6. [6] F. AMOROSO - M. MIGNOTTE, Upper bounds for the coefficients of irreducible integer polynomials in several variables, Acta Arith., 99 (2001), pp. 1-12. Zbl0978.11007MR1845359
  7. [7] Y. BUGEAUD, Algebraic numbers close to 1 in non-archimedean metrics, The Ramanujan J., 2 (1998), pp. 449-457. Zbl0918.11039MR1665321
  8. [8] A. DUBICKAS, On algebraic numbers close to 1, Bull. Australian Math. Soc., 58 (1998), pp. 423-434. Zbl0927.11050MR1662183
  9. [9] A. DUBICKAS, On certain geometric mean of the values of a polynomial, Liet. Matem. Rink., 40 (2000), pp. 17-27. Zbl0990.11062MR1801782
  10. [10] A. DUBICKAS, Three problems for polynomials of small measure, Acta Arith., 98 (2001), pp. 279-292. Zbl0972.11102MR1829627
  11. [11] G. EVEREST - T. WARD, Heights of polynomials and entropy in algebraic dynamics, London, Springer, 1999. Zbl0919.11064MR1700272
  12. [12] K. MAHLER, On the zeros of the derivative of a polynomial, Proc. Roy. Soc. London, Ser. A, 264 (1961), pp. 145-154. Zbl0109.25005MR133437
  13. [13] M. MIGNOTTE, On algebraic integers of small measure, Colloq. Math. Soc. János Bolyai, 34 (1981), pp. 1069-1077. Zbl0543.12002MR781176
  14. [14] M. MIGNOTTE, An inequality about irreducible factors of integer polynomials, J. Number Theory, 30 (1988), pp. 156-166. Zbl0648.12002MR961913
  15. [15] M. MIGNOTTE - M. WALDSCHMIDT, On algebraic numbers of small height: linear forms in one logarithm, J. Number Theory, 47 (1994), pp. 43-62. Zbl0801.11033MR1273455
  16. [16] A. SCHINZEL, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications 77, Cambridge, Cambridge University Press, 2000. Zbl0956.12001MR1770638
  17. [17] W. SCHMIDT, Diophantine approximation, Lecture Notes in Mathematics 785, Berlin-Heidelberg-New York, Springer, 1980. Zbl0421.10019MR568710

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.