Characterization of abelian-by-cyclic 3-rewritable groups
A. Abdollahi; A. Mohammadi Hassanabadi
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 173-180
- ISSN: 0041-8994
Access Full Article
topHow to cite
topAbdollahi, A., and Mohammadi Hassanabadi, A.. "Characterization of abelian-by-cyclic 3-rewritable groups." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 173-180. <http://eudml.org/doc/108642>.
@article{Abdollahi2004,
author = {Abdollahi, A., Mohammadi Hassanabadi, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {permutation identities; rewritable groups; Abelian-by-cyclic 3-rewritable groups; Abelian subgroups of finite index; derived subgroup; Fitting subgroup},
language = {eng},
pages = {173-180},
publisher = {Seminario Matematico of the University of Padua},
title = {Characterization of abelian-by-cyclic 3-rewritable groups},
url = {http://eudml.org/doc/108642},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Abdollahi, A.
AU - Mohammadi Hassanabadi, A.
TI - Characterization of abelian-by-cyclic 3-rewritable groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 173
EP - 180
LA - eng
KW - permutation identities; rewritable groups; Abelian-by-cyclic 3-rewritable groups; Abelian subgroups of finite index; derived subgroup; Fitting subgroup
UR - http://eudml.org/doc/108642
ER -
References
top- [1] A. ABDOLLAHI - A. MOHAMMADI HASSANABADI, 3-rewritable nilpotent 2-groups of class 2, to appear in Comm. Algebra, 32 (2004). Zbl1088.20007MR2149067
- [2] M. BIANCHI - R. BRANDL - A. GILLIO BERTA MAURI, On the 4-permutational property, Arch. Math. (Basel), 48, No. 4, (1987), pp. 281-285. Zbl0623.20022MR884558
- [3] R. D. BLYTH, Odd order groups with the rewriting property Q3 , Arch. Math. (Basel), 78, No. 5 (2002), pp. 337-344. Zbl1011.20024MR1903666
- [4] R. D. BLYTH, Rewriting products of group elements-II, J. Algebra, 119 (1988), pp. 246-259. Zbl0663.20036MR971358
- [5] R. D. BLYTH, Rewriting products of group elements-I, J. Algebra, 116 (1988), pp. 506-521. Zbl0647.20033MR953167
- [6] R. D. BLYTH - D. J. S. ROBINSON, Semisimple groups with the rewriting property Q5, Comm. Algebra, 23, No. 6 (1995), pp. 2171-2180. Zbl0831.20027MR1327132
- [7] R. BRANDL, Zur theorie der untergruppenabgeshlossenen formationen: Endlich varietäten, J. Algebra, 73 (1981), pp. 1-22. Zbl0484.20012MR641629
- [8] M. CURZIO - P. LONGOBARDI - M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sem. Mat. Fis. Nat., 74 (1983), pp. 136-142. Zbl0528.20031MR739397
- [9] M. CURZIO - P. LONGOBARDI - M. MAJ - D. J. S. ROBINSON, On a permutational properties of groups, Arch. Math. (basel), 44 (1985), pp. 385-389. Zbl0544.20036MR792360
- [10] P. LONGOBARDI - M. MAJ - S. STONEHEWER, The classification of groups in which every product of four elements can be reordered, Rend. Semin. Mat. Univ. Padova, 93 (1995), pp. 7-26. Zbl0838.20038MR1354348
- [11] P. LONGOBARDI - S. E. STONEHEWER, Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois Journal of Mathematics, 35, No. 2 (1991), pp. 198-219. Zbl0698.20013MR1091438
- [12] M. MAJ, On the derived length of groups with some permutational property, J. Algebra 136, No. 1 (1991), pp. 86-91. Zbl0721.20022MR1085122
- [13] M. MAJ - S. E. STONEHEWER, Non-nilpotent groups in which every product of four elements can be reordered, Can. J. Math., 42, No. 6 (1990), pp. 1053-1066. Zbl0727.20027MR1099457
- [14] D. J. S. ROBINSON, A course in the theory of groups, 2nd ed., Berlin-New York, 1995. Zbl0836.20001MR1357169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.