Characterization of abelian-by-cyclic 3-rewritable groups

A. Abdollahi; A. Mohammadi Hassanabadi

Rendiconti del Seminario Matematico della Università di Padova (2004)

  • Volume: 112, page 173-180
  • ISSN: 0041-8994

How to cite

top

Abdollahi, A., and Mohammadi Hassanabadi, A.. "Characterization of abelian-by-cyclic 3-rewritable groups." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 173-180. <http://eudml.org/doc/108642>.

@article{Abdollahi2004,
author = {Abdollahi, A., Mohammadi Hassanabadi, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {permutation identities; rewritable groups; Abelian-by-cyclic 3-rewritable groups; Abelian subgroups of finite index; derived subgroup; Fitting subgroup},
language = {eng},
pages = {173-180},
publisher = {Seminario Matematico of the University of Padua},
title = {Characterization of abelian-by-cyclic 3-rewritable groups},
url = {http://eudml.org/doc/108642},
volume = {112},
year = {2004},
}

TY - JOUR
AU - Abdollahi, A.
AU - Mohammadi Hassanabadi, A.
TI - Characterization of abelian-by-cyclic 3-rewritable groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 173
EP - 180
LA - eng
KW - permutation identities; rewritable groups; Abelian-by-cyclic 3-rewritable groups; Abelian subgroups of finite index; derived subgroup; Fitting subgroup
UR - http://eudml.org/doc/108642
ER -

References

top
  1. [1] A. ABDOLLAHI - A. MOHAMMADI HASSANABADI, 3-rewritable nilpotent 2-groups of class 2, to appear in Comm. Algebra, 32 (2004). Zbl1088.20007MR2149067
  2. [2] M. BIANCHI - R. BRANDL - A. GILLIO BERTA MAURI, On the 4-permutational property, Arch. Math. (Basel), 48, No. 4, (1987), pp. 281-285. Zbl0623.20022MR884558
  3. [3] R. D. BLYTH, Odd order groups with the rewriting property Q3 , Arch. Math. (Basel), 78, No. 5 (2002), pp. 337-344. Zbl1011.20024MR1903666
  4. [4] R. D. BLYTH, Rewriting products of group elements-II, J. Algebra, 119 (1988), pp. 246-259. Zbl0663.20036MR971358
  5. [5] R. D. BLYTH, Rewriting products of group elements-I, J. Algebra, 116 (1988), pp. 506-521. Zbl0647.20033MR953167
  6. [6] R. D. BLYTH - D. J. S. ROBINSON, Semisimple groups with the rewriting property Q5, Comm. Algebra, 23, No. 6 (1995), pp. 2171-2180. Zbl0831.20027MR1327132
  7. [7] R. BRANDL, Zur theorie der untergruppenabgeshlossenen formationen: Endlich varietäten, J. Algebra, 73 (1981), pp. 1-22. Zbl0484.20012MR641629
  8. [8] M. CURZIO - P. LONGOBARDI - M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sem. Mat. Fis. Nat., 74 (1983), pp. 136-142. Zbl0528.20031MR739397
  9. [9] M. CURZIO - P. LONGOBARDI - M. MAJ - D. J. S. ROBINSON, On a permutational properties of groups, Arch. Math. (basel), 44 (1985), pp. 385-389. Zbl0544.20036MR792360
  10. [10] P. LONGOBARDI - M. MAJ - S. STONEHEWER, The classification of groups in which every product of four elements can be reordered, Rend. Semin. Mat. Univ. Padova, 93 (1995), pp. 7-26. Zbl0838.20038MR1354348
  11. [11] P. LONGOBARDI - S. E. STONEHEWER, Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois Journal of Mathematics, 35, No. 2 (1991), pp. 198-219. Zbl0698.20013MR1091438
  12. [12] M. MAJ, On the derived length of groups with some permutational property, J. Algebra 136, No. 1 (1991), pp. 86-91. Zbl0721.20022MR1085122
  13. [13] M. MAJ - S. E. STONEHEWER, Non-nilpotent groups in which every product of four elements can be reordered, Can. J. Math., 42, No. 6 (1990), pp. 1053-1066. Zbl0727.20027MR1099457
  14. [14] D. J. S. ROBINSON, A course in the theory of groups, 2nd ed., Berlin-New York, 1995. Zbl0836.20001MR1357169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.