A note on extremality and completeness in financial markets with infinitely many risky assets
Rendiconti del Seminario Matematico della Università di Padova (2004)
- Volume: 112, page 181-198
- ISSN: 0041-8994
Access Full Article
topHow to cite
topCampi, Luciano. "A note on extremality and completeness in financial markets with infinitely many risky assets." Rendiconti del Seminario Matematico della Università di Padova 112 (2004): 181-198. <http://eudml.org/doc/108643>.
@article{Campi2004,
author = {Campi, Luciano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Artzner-Heath market; extremality of equivalent martingale measures; locally convex spaces; weak topology},
language = {eng},
pages = {181-198},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on extremality and completeness in financial markets with infinitely many risky assets},
url = {http://eudml.org/doc/108643},
volume = {112},
year = {2004},
}
TY - JOUR
AU - Campi, Luciano
TI - A note on extremality and completeness in financial markets with infinitely many risky assets
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2004
PB - Seminario Matematico of the University of Padua
VL - 112
SP - 181
EP - 198
LA - eng
KW - Artzner-Heath market; extremality of equivalent martingale measures; locally convex spaces; weak topology
UR - http://eudml.org/doc/108643
ER -
References
top- [1] P. ARTZNER - D. HEATH, Approximate Completeness with Multiple Martingale Measures, Math. Finance, 5 (1995), pp. 1-11. Zbl0872.60032MR1322697
- [2] R. BÄTTIG, Completeness of securities market models-an operator point of view, Ann. Appl. Prob., 9 (1999), pp. 529-566. Zbl0941.91019MR1687390
- [3] R. BÄTTIG - R.A. JARROW, The Second Fundamental Theorem of Asset Pricing: A New Approach, The Review of Financial Studies, 12 (1999), pp. 1219-1235.
- [4] S. BEGHDADI-SAKRANI, Calcul stochastique pour des mesures signées. In: Séminaire de Probabilités XXXVI, Lecture Notes in Math., 1801 (2003), pp. 366-382, Springer, Berlin, 2003. Zbl1035.60055MR1971598
- [5] C. DELLACHERIE, Une représentation intégrale des surmartingales à temps discret, Publ. Inst. Statist. Univ. Paris, 17 (2) (1968), pp. 1-17. Zbl0177.45401MR314109
- [6] R. G. DOUGLAS, On extremal measures and subspace density, Michigan Math. J., 11 (1964), pp. 644-652. Zbl0121.33102MR185427
- [7] R. G. DOUGLAS, On Extremal Measure and Subspace Density II, Proceedings of the American Math. Society, 17 (6) (1966), pp. 1363-1365. Zbl0171.34302MR205053
- [8] N. DUNFORD - J. T. SCHWARTZ, Linear Operators. Part I: General Theory, John Wiley and Sons, New York Chichester Brisbane Toronto Singapore, 1957. Zbl0635.47001MR1009162
- [9] R. A. JARROW - X. JIN - D. P. MADAN, The Second Fundamental Theorem of Asset Pricing, Math. Finance, 9 (1999), pp. 255-273. Zbl0991.91035MR1850793
- [10] R. A. JARROW - D. P. MADAN, Hedging contingent claims on semimartingales, Finance Stochast., 3 (1999), pp. 111-134. Zbl0926.60035MR1805323
- [11] M. A. NAIMARK, Extremal spectral functions of a symmetric operator, Bull. Acad. Sci. URSS Sér. Math., 11 (1947), pp. 327-344. Zbl0032.21501MR24062
- [12] L. NARICI - E. BECKENSTEIN, Topological vector spaces, Dekker, New York and Basel, 1985. Zbl0569.46001MR812056
- [13] J. RUIZ DE CHAVEZ, Le Théorème de Paul Lévy pour des mesures signées. In: J. Azema - M. Yor (eds.), Séminaire de Probabilités XVIII, Lect. Notes Math., 1059 (1984), pp. 245-255, Springer, Berlin Heidelberg New York. Zbl0537.60039MR770965
- [14] H. H. SCHAEFER, Topological vector spaces, MacMillan, London, 1966. Zbl0141.30503MR193469
- [15] M. YOR, Sous-espaces denses dans L1 ou H1 et representation des martingales. In: C. Dellacherie - P. A. Meyer - M. Weil (eds.), Séminaire de Probabilités XII, Lect. Notes Math., 649 (1976), pp. 265-309, Springer, Berlin Heidelberg New York. Zbl0391.60046MR520008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.