Divergence measure fields and Cauchy’s stress theorem

Miroslav Silhavy

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 113, page 15-45
  • ISSN: 0041-8994

How to cite

top

Silhavy, Miroslav. "Divergence measure fields and Cauchy’s stress theorem." Rendiconti del Seminario Matematico della Università di Padova 113 (2005): 15-45. <http://eudml.org/doc/108654>.

@article{Silhavy2005,
author = {Silhavy, Miroslav},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {15-45},
publisher = {Seminario Matematico of the University of Padua},
title = {Divergence measure fields and Cauchy’s stress theorem},
url = {http://eudml.org/doc/108654},
volume = {113},
year = {2005},
}

TY - JOUR
AU - Silhavy, Miroslav
TI - Divergence measure fields and Cauchy’s stress theorem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 113
SP - 15
EP - 45
LA - eng
UR - http://eudml.org/doc/108654
ER -

References

top
  1. [1] S. S. ANTMAN - J. E. OSBORN, The principle of virtual work and integral laws of motion, Arch. Rational Mech. Anal., 69 (1979), pp. 231-262. Zbl0403.73003MR522525
  2. [2] G. ANZELLOTTI, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), pp. 293-318. Zbl0572.46023MR750538
  3. [3] C. BANFI - M. FABRIZIO, Sul concetto di sottocorpo nella meccanica dei continui, Rend. Acc. Naz. Lincei, 66 (1979), pp. 136-142. Zbl0446.73006MR606078
  4. [4] G.-Q. CHEN - H. FRID, On the Theory of Divergence-Measure Fields and Its Applications, Boletim da Sociedade Brasileira de Matemática (Bol. Soc. Bras. Math.), 32 (2001), pp. 1-33. Zbl1024.28009MR1894566
  5. [5] G.-Q. CHEN - H. FRID, Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics, Communications in Mathematical Physics, 236 (2003), pp. 251-280. Zbl1036.35125MR1981992
  6. [6] G.-Q. CHEN - H. FRID, Divergence-Measure Fields and Hyperbolic Conservation Laws, Arch. Rational Mech. Anal., 147 (1999), pp. 89-118. Zbl0942.35111MR1702637
  7. [7] M. DEGIOVANNI - A. MARZOCCHI - A. MUSESTI, Cauchy fluxes associated with tensor fields having divergence measure, Arch. Rational Mech. Anal., 147 (1999), pp. 197-223. Zbl0933.74007MR1709215
  8. [8] N. DUNFORD - J. T. SCHWARTZ, Linear Operators: Part I: General Theory, New York, Willey (1958). Zbl0084.10402MR1009162
  9. [9] K. FALCONER, Fractal geometry, Chichester, Willey (1990). Zbl0689.28003MR1102677
  10. [10] H. FEDERER, Geometric measure theory, New York, Springer (1969). Zbl0176.00801MR257325
  11. [11] R. FOSDICK - E. VIRGA, A variational proof of the stress theorem of Cauchy, Arch. Rational Mech. Anal., 105 (1989), pp. 95-103. Zbl0658.73002MR968456
  12. [12] R. V. KOHN - R. TEMAM, Dual spaces of stresses and strains, Appl. Math. Optimization, 10 (1983), pp. 1-35. Zbl0532.73039MR701898
  13. [13] M. E. GURTIN - L. C. MARTINS, Cauchy's theorem in classical physics, Arch. Rational Mech. Anal., 60 (1976), pp. 305-324. Zbl0347.73001MR408377
  14. [14] M. E. GURTIN - W. O. WILLIAMS - W. ZIEMER, Geometric measure theory and the axioms of continuum mechanics, Arch. Rational Mech. Anal., 92 (1985), pp. 1-22. Zbl0599.73002MR816619
  15. [15] A. MARZOCCHI - A. MUSESTI, Decomposition and integral representation of Cauchy interactions associated with measures, Continuum Mech. Thermodyn., 13 (2001), pp. 149-169. Zbl1019.74003MR1857126
  16. [16] A. MARZOCCHI - A. MUSESTI, On the measure-theoretic foundations of the second law of thermodynamics, Math. Models Methods Appl. Sci., 12 (2002), pp. 721-736. Zbl1205.80003MR1909424
  17. [17] A. MARZOCCHI - A. MUSESTI, Balanced powers in continuum mechanics, Meccanica, 38 (2003), pp. 369-389. Zbl1062.74003MR1981023
  18. [18] A. MARZOCCHI - A. MUSESTI, The Cauchy stress theorem for bodies with finite perimeter, Rend. Sem. Mat. Univ. Padova, 109 (2003), pp. 1-11. Zbl1165.74300MR1997983
  19. [19] W. NOLL, The foundations of classical mechanics in the light of recent advances in continuum mechanics, in The Axiomatic Method, with Special Reference to Geometry and Physics, P. Suppes (ed). North-Holland, Amsterdam 1959 pp. 266-281. Zbl0087.39401MR108036
  20. [20] W. NOLL - E. G. VIRGA, Fit regions and functions of bounded variation, Arch. Rational Mech. Anal., 102 (1988), pp. 1-21. Zbl0668.73005MR938381
  21. [21] G. RODNAY - R. SEGEV, Cauchy's flux theorem in light of the geometric integration theory, J. Elasticity, 71 (2002), pp. 183-203 Preprint, 2002. Zbl1156.74305MR2042680
  22. [22] C. A. ROGERS, Hausdorff measures, Cambridge, Cambridge University Press (1970). Zbl0204.37601MR281862
  23. [23] R. SEGEV, The geometry of Cauchy's fluxes, Arch. Rational Mech. Anal., 154 (2000), pp. 183-198. Zbl0965.58004MR1785472
  24. [24] M. SÏILHAVÝ, The existence of the flux vector and the divergence theorem for general Cauchy fluxes, Arch. Rational Mech. Anal., 90 (1985), pp. 195-212. Zbl0593.73007MR803773
  25. [25] M. SÏILHAVý, Cauchy's stress theorem and tensor fields with divergences in Lp , Arch. Rational Mech. Anal., 116 (1991), pp. 223-255. Zbl0776.73003MR1132761
  26. [26] R. TEMAM, Navier-Stokes equations, Amsterdam, North-Holland (1977). Zbl0383.35057MR603444
  27. [27] R. L. WHEEDEN - S. ZYGMUND, Measure and integral, New York and Basel, M. Dekker (1977). Zbl0362.26004MR492146
  28. [28] H. WHITNEY, Geometric integration theory, Princeton, Princeton University Press (1957). Zbl0083.28204MR87148
  29. [29] W. ZIEMER, Cauchy flux and sets of finite perimeter, Arch. Rational Mech. Anal., 84 (1983), pp. 189-201. Zbl0531.73005MR714974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.