Les nilradicaux différentiels d’anneaux associés aux groupes triangulaires de Riemann-Schwarz

Federico Pellarin

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 114, page 213-239
  • ISSN: 0041-8994

How to cite

top

Pellarin, Federico. "Les nilradicaux différentiels d’anneaux associés aux groupes triangulaires de Riemann-Schwarz." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 213-239. <http://eudml.org/doc/108665>.

@article{Pellarin2005,
author = {Pellarin, Federico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {fre},
pages = {213-239},
publisher = {Seminario Matematico of the University of Padua},
title = {Les nilradicaux différentiels d’anneaux associés aux groupes triangulaires de Riemann-Schwarz},
url = {http://eudml.org/doc/108665},
volume = {114},
year = {2005},
}

TY - JOUR
AU - Pellarin, Federico
TI - Les nilradicaux différentiels d’anneaux associés aux groupes triangulaires de Riemann-Schwarz
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 213
EP - 239
LA - fre
UR - http://eudml.org/doc/108665
ER -

References

top
  1. [1] D. BERTRAND, Theta functions and transcendence. Ramanujan J., 1, No. 4 (1997), pp. 339-350. Zbl0916.11043MR1608721
  2. [2] D. BERTRAND - W. ZUDILIN, Derivatives of Siegel modular forms and exponential functions. Izv. Ross. Akad. Nauk, Ser. Mat., 65, No. 4 (2001), pp. 21-34. Zbl1021.11013MR1857708
  3. [3] V. BOSSER, Indépendance algébrique de valeurs de séries d'Eisenstein, A paraõÃtre dans Séminaires et Congrés, SMF (2005). 
  4. [4] L. R. FORD, Automorphic functions. New York, McGraw-Hill. (1929). JFM55.0810.04
  5. [5] G. HALPHÉN, Sur un système d'équation différentielles. C. R. XCII (1881), pp. 1101-1103. JFM13.0289.02
  6. [6] C. G. J. JACOBI, Über die Differentialgleichung, welcher die Reihen 1 Æ 2q ‡ 2q4 2q9 ‡etc., 2  q4 p ‡ 2  q94 p ‡ 2  q254 p ‡ etc. J. Reine Angew. Math., 36 (1948), pp. 97-112. 
  7. [7] C. JADOT, Critères pour l'indépendance linéaire et algébrique. Thèse de doctorat de l'Université de Paris VI (1996). 
  8. [8] S. LANG, Introduction to modular forms, (Avec deux appendices, par D. B. Zagier et par W. Feit). Grundlehren der mathematischen Wissenschaften (1976), p. 222. Zbl0344.10011MR429740
  9. [9] YU. V. NESTERENKO, Modular functions and transcendence questions. Sb. Math., 187, No. 9 (1996), pp. 1319-1348. Zbl0898.11031MR1422383
  10. [10] YU. V. NESTERENKO, Algebraic independence for values of Ramanujan functions. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 3, pp. 27-43, Lecture Notes in Mathematics 1752, Springer (2001). MR1837825
  11. [11] YU. V. NESTERENKO, Multiplicity estimates for solutions of algebraic differential equations. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 10, pp. 149-165, Lecture Notes in Mathematics 1752, Springer (2001). MR1837832
  12. [12] K. NISHIOKA, A conjecture of Mahler on automorphic functions. Arch. Math., 53, No. 1 (1989), pp. 46-51. Zbl0684.10022MR1005168
  13. [13] P. PHILIPPON, Diophantine geometry. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 6, pp. 83-93, Lecture Notes in Mathematics 1752, Springer (2001). MR1837828
  14. [14] G. RÉMOND, Géométrie diophantienne multiprojective. Dans Introduction to algebraic independence theory. Yu. V. Nesterenko et P. Philippon éditeurs, chapitre 7, pp. 95-117, Lecture Notes in Mathematics 1752, Springer (2001). MR1837822
  15. [15] F. PELLARIN, La structure différentielle de l'anneau des formes quasimodulaires pour SL2(Z). Soumis au Journal de Théorie des Nombres de Bordeaux https://hal.ccsd.cnrs.fr/ccsd-00005554/en. 
  16. [16] M. YOSHIDA, Fuchsian Differential Equations. Aspects of Mathematics, vol. E11. Zbl0618.35001
  17. [17] M. YOSHIDA, Hypergeometric functions, my Love. Aspects of Mathematics, (1997). Zbl0889.33008MR1453580
  18. [18] W. ZUDILIN, The hypergeometric equation and Ramanujan functions. Ramanujan Journal, Vol. 7, No. 4 (2003), pp. 435-447. Zbl1072.11052MR2040982
  19. [19] AA. B. SHIDLOVSKIJ, Transcendental numbers. De Gruyter Studies in Mathematics, 12 (1989). Zbl0689.10043MR1033015
  20. [20] H. UMEMURA - H. WATANABE, Solutions of the second and fourth Painlevé equations. I. Nagoya Math. J. 148 (1997), pp. 151-198. Zbl0934.33029MR1492945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.