A q -logarithmic analogue of Euler’s sine integral

Nobushige Kurokawa; Masato Wakayama

Rendiconti del Seminario Matematico della Università di Padova (2005)

  • Volume: 114, page 51-62
  • ISSN: 0041-8994

How to cite

top

Kurokawa, Nobushige, and Wakayama, Masato. "A $q$-logarithmic analogue of Euler’s sine integral." Rendiconti del Seminario Matematico della Università di Padova 114 (2005): 51-62. <http://eudml.org/doc/108668>.

@article{Kurokawa2005,
author = {Kurokawa, Nobushige, Wakayama, Masato},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {51-62},
publisher = {Seminario Matematico of the University of Padua},
title = {A $q$-logarithmic analogue of Euler’s sine integral},
url = {http://eudml.org/doc/108668},
volume = {114},
year = {2005},
}

TY - JOUR
AU - Kurokawa, Nobushige
AU - Wakayama, Masato
TI - A $q$-logarithmic analogue of Euler’s sine integral
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2005
PB - Seminario Matematico of the University of Padua
VL - 114
SP - 51
EP - 62
LA - eng
UR - http://eudml.org/doc/108668
ER -

References

top
  1. [E] L. EULER, De summis serierum numeros Bernoullianos involventium. Novi comm. acad. scient. Petropolitanae, 14 (1769), pp. 129-167 (Opera Omnia I-15, pp.91-130). 
  2. [H] O. HÖLDER, Ueber eine transcendente Function. Göttingen Nachrichten, 16 (1886), pp. 514-522. Zbl18.0376.01JFM18.0376.01
  3. [K] A. N. KIRILLOV, Dilogarithm identities, Progr. Theoret. Phys. Suppl., 118 (1995), pp. 61-142. Zbl0894.11052MR1356515
  4. [KK] N. KUROKAWA - S. KOYAMA, Multiple sine functions. Forum Math., 15 (2003), pp. 839-876. Zbl1065.11065MR2010282
  5. [KOW] N. KUROKAWA - H. OCHIAI - M. WAKAYAMA, Multiple trigonometry and zeta funcitons. J. Ramanujan Math. Soc., 17 (2002), pp. 101-113. Zbl0995.11054MR1913896
  6. [KW] N. KUROKAWA - M. WAKAYAMA, Absolute tensor products. Internat. Math. Res. Notices, 5 (2004), pp. 249-260. Zbl1086.11041MR2038715
  7. [S] T. SHINTANI, On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 167-199. Zbl0364.12012MR460283
  8. [We] A. WEIL, Sur une formule classique. J. Math. Soc. Japan, 20 (1968), pp. 400-402. Zbl0174.33902MR224556
  9. [WW] E.T. WHITTAKER - G. N. WATSON, A Course of Modern Analysis, Cambridge Univ. Press (Third ed.) 1920. MR1424469JFM47.0190.17

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.