On some classes of divisible modules

Luigi Salce; Peter Vámos

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 125-136
  • ISSN: 0041-8994

How to cite

top

Salce, Luigi, and Vámos, Peter. "On some classes of divisible modules." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 125-136. <http://eudml.org/doc/108670>.

@article{Salce2006,
author = {Salce, Luigi, Vámos, Peter},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {125-136},
publisher = {Seminario Matematico of the University of Padua},
title = {On some classes of divisible modules},
url = {http://eudml.org/doc/108670},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Salce, Luigi
AU - Vámos, Peter
TI - On some classes of divisible modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 125
EP - 136
LA - eng
UR - http://eudml.org/doc/108670
ER -

References

top
  1. [1] G. AZUMAYA, Locally split submodules and modules with perfect endomorphism rings. In Noncommutative ring theory (Athens, OH, 1989), volume 1448 of Lecture Notes in Math., pp. 1-6. Springer, Berlin, 1990. Zbl0733.16002MR1084616
  2. [2] S. BAZZONI and L. SALCE, Almost perfect domains. Colloq. Math., 95 (2) (2003), pp. 285-301. Zbl1048.13014MR1968387
  3. [3] W. BRANDAL, Almost maximal integral domains and finitely generated modules. Trans. Amer. Math. Soc., 183 (1973), pp. 203-222. Zbl0273.13011MR325609
  4. [4] S. U. CHASE, Direct products of modules. Trans. Amer. Math. Soc., 97 (1960), pp. 457-473. Zbl0100.26602MR120260
  5. [5] A. FACCHINI, Absolutely pure modules and locally injective modules. In Commutative ring theory (Fès, 1992), volume 153 of Lecture Notes in Pure and Appl. Math., pp. 105-109. Dekker, New York, 1994. Zbl0810.13007MR1261882
  6. [6] L. FUCHS - L. SALCE, Modules over non-Noetherian domains, volume 84 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001. Zbl0973.13001MR1794715
  7. [7] S. JANAKIRAMAN - K. M. RANGASWAMY, Strongly pure subgroups of abelian groups. In Group theory (Proc. Miniconf., Australian Nat. Univ., Canberra, 1975), pp. 57-65. Lecture Notes in Math., Vol. 573. Springer, Berlin, 1977. Zbl0366.20042MR447436
  8. [8] I. KAPLANSKY, Modules over Dedekind rings and valuation rings. Trans. Amer. Math. Soc., 72 (1952), pp. 327-340. Zbl0046.25701MR46349
  9. [9] G. B. KLATT - L. S. LEVY, Pre-self-injective rings. Trans. Amer. Math. Soc., 137 (1969), pp. 407-419. Zbl0176.31603MR236165
  10. [10] J. LAMBEK, Lectures on rings and modules. Chelsea Publishing Co., New York, second edition, 1976. Zbl0365.16001MR419493
  11. [11] A. LARADJI, On a problem of Fuchs and Salce. Comm. Algebra, 33 (4) (2005), pp. 1193-1194. Zbl1094.16002MR2136696
  12. [12] E. MATLIS, Divisible modules. Proc. Amer. Math. Soc., 11 (1960), pp. 385-391. Zbl0095.02403MR116044
  13. [13] C. MEGIBBEN, Absolutely pure modules. Proc. Amer. Math. Soc., 26 (1970), pp. 561-566. Zbl0216.33803MR294409
  14. [14] B. OLBERDING, Almost maximal Prüfer domains. Comm. Algebra, 27 (9) (1999), pp. 4433-4458. Zbl0977.13010MR1705879
  15. [15] V. S. RAMAMURTHI - K. M. RANGASWAMY, On finitely injective modules, J. Austral. Math. Soc., 16 (1973), pp. 239-248. Collection of articles dedicated to the memory of Hanna Neumann, II. Zbl0267.16014MR332882
  16. [16] K. M. RANGASWAMY, An aspect of purity and its dualisation in abelian groups and modules. In Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), pp. 307-320. Academic Press, London, 1979. Zbl0424.16012MR565612
  17. [17] P. VÁMOS, The decomposition of finitely generated modules and fractionally self-injective rings. J. London Math. Soc. (2), 16 (2) (1977), pp. 209-220. Zbl0404.13012MR469903
  18. [18] P. ZANARDO, Almost perfect local domains and their dominating Archimedean valuation domains. J. Algebra Appl., 1 (4) (2002), pp. 451-467. Zbl1075.13010MR1950137
  19. [19] W. ZIMMERMANN, On locally pure-injective modules. J. Pure Appl. Algebra, 166 (3) (2002), pp. 337-357. Zbl0993.16002MR1870625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.