Pretentiousness in analytic number theory
- [1] Départment de Mathématiques et Statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 159-173
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGranville, Andrew. "Pretentiousness in analytic number theory." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 159-173. <http://eudml.org/doc/10868>.
@article{Granville2009,
abstract = {In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.},
affiliation = {Départment de Mathématiques et Statistique Université de Montréal CP 6128 succ Centre-Ville Montréal, QC H3C 3J7, Canada},
author = {Granville, Andrew},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {pretentiousness; prime number theorem; character sums; mean values of totally multiplicative functions; multiplicative functions in arithmetic progressions},
language = {eng},
number = {1},
pages = {159-173},
publisher = {Université Bordeaux 1},
title = {Pretentiousness in analytic number theory},
url = {http://eudml.org/doc/10868},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Granville, Andrew
TI - Pretentiousness in analytic number theory
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 159
EP - 173
AB - In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.
LA - eng
KW - pretentiousness; prime number theorem; character sums; mean values of totally multiplicative functions; multiplicative functions in arithmetic progressions
UR - http://eudml.org/doc/10868
ER -
References
top- A. Balog, A. Granville, K. Soundararajan, Multiplicative Functions in Arithmetic Progressions (to appear). Zbl1306.11078MR1691308
- E. Bombieri, Le grand crible dans la théorie analytique des nombres . Astérisque 18 (1987/1974). Zbl0292.10035MR891718
- D.A. Burgess, On character sums and -series, I. Proc. London Math. Soc. 12 (1962), 193–206. On character sums and -series, II . Proc. London Math. Soc. 13 (1963), 524–536. Zbl0106.04004MR132733
- H. Davenport, Multiplicative number theory. Springer Verlag, New York, 1980. Zbl0453.10002MR606931
- J.B. Friedlander, Selberg’s formula and Siegel’s zero. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 15–23. Academic Press, London-New York, 1981. Zbl0459.10029MR637340
- P.X. Gallagher, A large sieve density estimate near . Invent. Math. 11 (1970), 329–339. Zbl0219.10048MR279049
- A. Granville, G. Martin, Prime Number Races. Amer. Math. Monthly 113 (2006), 1–33. Zbl1139.11037MR2202918
- A. Granville, K. Soundararajan, The Spectrum of Multiplicative Functions. Ann. of Math. 153 (2001), 407–470. Zbl1036.11042MR1829755
- A. Granville, K. Soundararajan, Large Character Sums. J. Amer. Math. Soc 14 (2001), 365–397. Zbl0983.11053MR1815216
- A. Granville, K. Soundararajan, Large Character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc. 20 (2007), 357–384. Zbl1210.11090MR2276774
- A. Granville, K. Soundararajan, Large Character Sums: pretentious characters, Burgess’s theorem and the location of zeros (to appear). Zbl1210.11090MR1815216
- G. Halász, On the distribution of additive and mean-values of multiplicative functions. Stud. Sci. Math. Hungar. 6 (1971), 211–233. Zbl0226.10046MR319930
- G. Halász, On the distribution of additive arithmetic functions. Acta Arith. 27 (1975), 143–152. Zbl0256.10028MR369292
- H. Iwaniec, E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, Rhode Island, 2004. Zbl1059.11001MR2061214
- H.L. Montgomery, R.C. Vaughan, Exponential sums with multiplicative coefficients. Invent. Math. 43 (1977), 69–82. Zbl0362.10036MR457371
- R.E.A.C. Paley, A theorem on characters. J. London Math. Soc. 7 (1932), 28–32. Zbl0003.34101
- G. Pólya , Über die Verteilung der quadratischen Reste und Nichtreste. Göttingen Nachrichten (1918), 21–29. Zbl46.0265.02
- A. Selberg, An elementary proof of the prime number theorem for arithmetic progressions. Can. J. Math. 2 (1950), 66–78. Zbl0036.30605MR33306
- I.M. Vinogradov, Über die Verteilung der quadratischen Reste und Nichtreste. J. Soc. Phys. Math. Univ. Permi 2 (1919), 1–14.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.