Mutually permutable products of two nilpotent groups

Adolfo Ballester-Bolinches; James C. Beidleman; John Cossey; Hermann Heineken; María Carmen Pedraza-Aguilera

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 273-279
  • ISSN: 0041-8994

How to cite

top

Ballester-Bolinches, Adolfo, et al. "Mutually permutable products of two nilpotent groups." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 273-279. <http://eudml.org/doc/108682>.

@article{Ballester2006,
author = {Ballester-Bolinches, Adolfo, Beidleman, James C., Cossey, John, Heineken, Hermann, Pedraza-Aguilera, María Carmen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {mutually permutable subgroups; totally permutable subgroups; finite groups; products of nilpotent subgroups; Abelian-by-nilpotent groups},
language = {eng},
pages = {273-279},
publisher = {Seminario Matematico of the University of Padua},
title = {Mutually permutable products of two nilpotent groups},
url = {http://eudml.org/doc/108682},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Ballester-Bolinches, Adolfo
AU - Beidleman, James C.
AU - Cossey, John
AU - Heineken, Hermann
AU - Pedraza-Aguilera, María Carmen
TI - Mutually permutable products of two nilpotent groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 273
EP - 279
LA - eng
KW - mutually permutable subgroups; totally permutable subgroups; finite groups; products of nilpotent subgroups; Abelian-by-nilpotent groups
UR - http://eudml.org/doc/108682
ER -

References

top
  1. [1] M. ASAAD - A. SHAALAN, On the supersolvability of finite groups, Arch. Math., 53 (1989), pp. 318-326. Zbl0685.20018MR1015994
  2. [2] A. BALLESTER-BOLINCHES - J. COSSEY - R. ESTEBAN-ROMERO, On totally permutable products of finite groups, J. of Algebra, 293 (2005), pp. 269-278. Zbl1089.20008MR2173975
  3. [3] A. BALLESTER-BOLINCHES - M. D. PÉREZ-RAMOS - M. C. PEDRAZA-AGUILERA, Totally and mutually permutable products of finite groups, Groups St. Andrews 1997 in Bath I, pp. 65-68. London Math. Soc. Lecture Note Ser. 260. Cambridge University Press, Cambridge, 1999. Zbl0939.20019MR1676610
  4. [4] J. C. BEIDLEMAN - H. Heineken, Survey of mutually and totally permutable products in infinite groups, Topics in infinite groups, pp. 45-62, Quad. Mat. 8, Dept. Math. Seconda Univ. Napoli, Caserta, 2001. Zbl1026.20022MR1949559
  5. [5] J. C. BEIDLEMAN - H. HEINEKEN, Totally permutable torsion subgroups, J. Group Theory, 2 (1999), pp. 377-392. Zbl0941.20026MR1718750
  6. [6] J. C. BEIDLEMAN - H. HEINEKEN, Mutually permutable subgroups and group classes, Arch. Math., 85 (2005), pp. 18-30. Zbl1103.20015MR2155106
  7. [7] A. CAROCCA, p-supersolvability of factorized groups, Hokkaido Math. J., 21 (1992), pp. 395-403. Zbl0804.20015MR1191026
  8. [8] A. CAROCCA - R. MAIER, Theorems of Kegel-Wielandt type, Groups St. Andrews 1997 in Bath I, 195-201. London Math. Soc. Lecture Note Ser., 260. Cambridge University Press, Cambridge, 1999. Zbl0929.20020MR1676616
  9. [9] C. D. H. COOPER, Power automorphisms of a group, Math. Z., 107 (1968), pp. 335-356. Zbl0169.33801MR236253
  10. [10] K. DOERK - T. HAWKES, Finite Soluble Groups, Walter De Gruyter, Berlin, New York, 1992. Zbl0753.20001MR1169099
  11. [11] D. GORENSTEIN, Finite Groups, Chelsea Pub. Co., New York, 1980. Zbl0463.20012MR569209
  12. [12] P. HALL, Some sufficient conditions for a group to be nilpotent. Illinois J. Math., 2 (1958), pp. 787-801. Zbl0084.25602MR105441
  13. [13] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967. Zbl0217.07201MR224703
  14. [14] G. ZAPPA, Sui gruppi supersolubili, Rend. Sem. U. Roma IV ser., 2 (1938), pp. 323-330. Zbl0020.20702
  15. [15] G. ZAPPA, Remark on a recent paper of O. Ore, Duke Math. J., 6 (1940), pp. 511-512. Zbl0023.21203MR2118JFM66.0079.03

NotesEmbed ?

top

You must be logged in to post comments.