Mutually permutable products of two nilpotent groups

Adolfo Ballester-Bolinches; James C. Beidleman; John Cossey; Hermann Heineken; María Carmen Pedraza-Aguilera

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 115, page 273-279
  • ISSN: 0041-8994

How to cite

top

Ballester-Bolinches, Adolfo, et al. "Mutually permutable products of two nilpotent groups." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 273-279. <http://eudml.org/doc/108682>.

@article{Ballester2006,
author = {Ballester-Bolinches, Adolfo, Beidleman, James C., Cossey, John, Heineken, Hermann, Pedraza-Aguilera, María Carmen},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {mutually permutable subgroups; totally permutable subgroups; finite groups; products of nilpotent subgroups; Abelian-by-nilpotent groups},
language = {eng},
pages = {273-279},
publisher = {Seminario Matematico of the University of Padua},
title = {Mutually permutable products of two nilpotent groups},
url = {http://eudml.org/doc/108682},
volume = {115},
year = {2006},
}

TY - JOUR
AU - Ballester-Bolinches, Adolfo
AU - Beidleman, James C.
AU - Cossey, John
AU - Heineken, Hermann
AU - Pedraza-Aguilera, María Carmen
TI - Mutually permutable products of two nilpotent groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 273
EP - 279
LA - eng
KW - mutually permutable subgroups; totally permutable subgroups; finite groups; products of nilpotent subgroups; Abelian-by-nilpotent groups
UR - http://eudml.org/doc/108682
ER -

References

top
  1. [1] M. ASAAD - A. SHAALAN, On the supersolvability of finite groups, Arch. Math., 53 (1989), pp. 318-326. Zbl0685.20018MR1015994
  2. [2] A. BALLESTER-BOLINCHES - J. COSSEY - R. ESTEBAN-ROMERO, On totally permutable products of finite groups, J. of Algebra, 293 (2005), pp. 269-278. Zbl1089.20008MR2173975
  3. [3] A. BALLESTER-BOLINCHES - M. D. PÉREZ-RAMOS - M. C. PEDRAZA-AGUILERA, Totally and mutually permutable products of finite groups, Groups St. Andrews 1997 in Bath I, pp. 65-68. London Math. Soc. Lecture Note Ser. 260. Cambridge University Press, Cambridge, 1999. Zbl0939.20019MR1676610
  4. [4] J. C. BEIDLEMAN - H. Heineken, Survey of mutually and totally permutable products in infinite groups, Topics in infinite groups, pp. 45-62, Quad. Mat. 8, Dept. Math. Seconda Univ. Napoli, Caserta, 2001. Zbl1026.20022MR1949559
  5. [5] J. C. BEIDLEMAN - H. HEINEKEN, Totally permutable torsion subgroups, J. Group Theory, 2 (1999), pp. 377-392. Zbl0941.20026MR1718750
  6. [6] J. C. BEIDLEMAN - H. HEINEKEN, Mutually permutable subgroups and group classes, Arch. Math., 85 (2005), pp. 18-30. Zbl1103.20015MR2155106
  7. [7] A. CAROCCA, p-supersolvability of factorized groups, Hokkaido Math. J., 21 (1992), pp. 395-403. Zbl0804.20015MR1191026
  8. [8] A. CAROCCA - R. MAIER, Theorems of Kegel-Wielandt type, Groups St. Andrews 1997 in Bath I, 195-201. London Math. Soc. Lecture Note Ser., 260. Cambridge University Press, Cambridge, 1999. Zbl0929.20020MR1676616
  9. [9] C. D. H. COOPER, Power automorphisms of a group, Math. Z., 107 (1968), pp. 335-356. Zbl0169.33801MR236253
  10. [10] K. DOERK - T. HAWKES, Finite Soluble Groups, Walter De Gruyter, Berlin, New York, 1992. Zbl0753.20001MR1169099
  11. [11] D. GORENSTEIN, Finite Groups, Chelsea Pub. Co., New York, 1980. Zbl0463.20012MR569209
  12. [12] P. HALL, Some sufficient conditions for a group to be nilpotent. Illinois J. Math., 2 (1958), pp. 787-801. Zbl0084.25602MR105441
  13. [13] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967. Zbl0217.07201MR224703
  14. [14] G. ZAPPA, Sui gruppi supersolubili, Rend. Sem. U. Roma IV ser., 2 (1938), pp. 323-330. Zbl0020.20702
  15. [15] G. ZAPPA, Remark on a recent paper of O. Ore, Duke Math. J., 6 (1940), pp. 511-512. Zbl0023.21203MR2118JFM66.0079.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.