On the Dirichlet polynomial of finite group of Lie type
Rendiconti del Seminario Matematico della Università di Padova (2006)
- Volume: 115, page 51-69
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDamian, Erika, and Lucchini, Andrea. "On the Dirichlet polynomial of finite group of Lie type." Rendiconti del Seminario Matematico della Università di Padova 115 (2006): 51-69. <http://eudml.org/doc/108685>.
@article{Damian2006,
author = {Damian, Erika, Lucchini, Andrea},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite simple groups; probabilistic zeta functions; irreducible Dirichlet polynomials; finite groups of Lie type},
language = {eng},
pages = {51-69},
publisher = {Seminario Matematico of the University of Padua},
title = {On the Dirichlet polynomial of finite group of Lie type},
url = {http://eudml.org/doc/108685},
volume = {115},
year = {2006},
}
TY - JOUR
AU - Damian, Erika
AU - Lucchini, Andrea
TI - On the Dirichlet polynomial of finite group of Lie type
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 115
SP - 51
EP - 69
LA - eng
KW - finite simple groups; probabilistic zeta functions; irreducible Dirichlet polynomials; finite groups of Lie type
UR - http://eudml.org/doc/108685
ER -
References
top- [1] E. ARTIN, The orders of the classical simple groups. Comm. Pure Appl. Math., 8 (1955), pp. 455-472. Zbl0065.25703MR73601
- [2] D. M. BLOOM, The subgroups of PSL(3; q) for odd q. Trans. Amer. Math. Soc., 127 (1967), pp. 150-178. Zbl0153.03702MR214671
- [3] K. S. BROWN, The coset poset and probabilistic zeta function of a finite group. J. Algebra 225, 2 (2000), pp. 989-1012. Zbl0973.20016MR1741574
- [4] R. W. CARTER, Simple groups of Lie type. Wiley Classics Library. John Wiley & Sons Inc., New York, 1989. Reprint of the 1972 original, A WileyInterscience Publication. Zbl0723.20006MR1013112
- [5] J. H. CONWAY - R. T. CURTIS - S. P. NORTON - R. A. PARKER - R. A. WILSON, Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray. Zbl0568.20001MR827219
- [6] E. DAMIAN, - A. LUCCHINI, The Dirichlet polynomial of a finite group and the subgroups of prime power index. In Advances in group theory 2002. Aracne, Rome, 2003, pp. 209-221. Zbl1070.20025MR2053446
- [7] E. DAMIAN - A. LUCCHINI, Recognizing the alternating groups from their probabilistic zeta function. Glasgow Math. J., 46 (2004), pp. 595-599. Zbl1071.20060MR2094813
- [8] E. DAMIAN, - A. LUCCHINI, The probabilistic zeta function of finite simple groups. J. Algebra, submitted. Zbl1127.20052MR2329578
- [9] E. DAMIAN - A. LUCCHINI - F. MORINI, Some properties of the probabilistic zeta function on finite simple groups. Pacific J. Math., 215, 1 (2004), pp. 3-14. Zbl1113.20063MR2060491
- [10] E. DETOMI - A. LUCCHINI, Recognizing soluble groups from their probabilistic zeta functions. Bull. London Math. Soc., 35, 5 (2003), pp. 659-664. Zbl1045.20054MR1989495
- [11] J. D. DIXON - B. MORTIMER, Permutation groups, vol. 163 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996. Zbl0951.20001MR1409812
- [12] W. FEIT, On large Zsigmondy primes. Proc. Amer. Math. Soc., 102, 1 (1988), pp. 29-36. Zbl0639.10007MR915710
- [13] R. GURALNICK - T. PENTTILA - C. E. PRAEGER - J. SAXL, Linear groups with orders having certain large prime divisors. Proc. London Math. Soc. (3) 78, 1 (1999), pp. 167-214. Zbl1041.20035MR1658168
- [14] P. HALL, The eulerian functions of a group. Quart. J. Math., 7 (1936), pp. 134-151. Zbl0014.10402JFM62.0082.02
- [15] B. HUPPERT, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, 1967. Zbl0217.07201MR224703
- [16] W. KIMMERLE - R. LYONS - R. SANDLING - D. N. TEAGUE, Composition factors from the group ring and Artin's theorem on orders of simple groups. Proc. London Math. Soc. (3) 60, 1 (1990), pp. 89-122. Zbl0668.20009MR1023806
- [17] M. W. LIEBECK - C. E. PRAEGER - J. SAXL, The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc., 86, (1990), p. 432. Zbl0703.20021MR1016353
- [18] D. QUILLEN, Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math., 28, 2 (1978), pp. 101-128. Zbl0388.55007MR493916
- [19] L. SOLOMON, The Steinberg character of a finite group with BN-pair. In Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968). Benjamin, New York, 1969, pp. 213-221. Zbl0216.08001MR246951
- [20] R. P. STANLEY, Enumerative combinatorics. Vol. 1, vol. 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Zbl0889.05001MR1442260
- [21] M. SUZUKI, A class of doubly transitive permutation groups. In Proc. Internat. Congr. Mathematicians (Stockholm, 1962). Inst. Mittag-Leffler, Djursholm, 1963, pp. 285-287. Zbl0116.25801MR175966
- [22] K. ZSIGMONDY, Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3 (1892), pp. 265-284. MR1546236JFM24.0176.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.