Gruppi che sono unione di un numero finito di laterali doppi

Enrico Jabara

Rendiconti del Seminario Matematico della Università di Padova (2006)

  • Volume: 116, page 41-53
  • ISSN: 0041-8994

How to cite

top

Jabara, Enrico. "Gruppi che sono unione di un numero finito di laterali doppi." Rendiconti del Seminario Matematico della Università di Padova 116 (2006): 41-53. <http://eudml.org/doc/108701>.

@article{Jabara2006,
author = {Jabara, Enrico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {unions of finitely many double cosets; subgroups of finite index; polycyclic groups; virtually nilpotent groups; residually finite groups; hyperbolic groups},
language = {ita},
pages = {41-53},
publisher = {Seminario Matematico of the University of Padua},
title = {Gruppi che sono unione di un numero finito di laterali doppi},
url = {http://eudml.org/doc/108701},
volume = {116},
year = {2006},
}

TY - JOUR
AU - Jabara, Enrico
TI - Gruppi che sono unione di un numero finito di laterali doppi
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2006
PB - Seminario Matematico of the University of Padua
VL - 116
SP - 41
EP - 53
LA - ita
KW - unions of finitely many double cosets; subgroups of finite index; polycyclic groups; virtually nilpotent groups; residually finite groups; hyperbolic groups
UR - http://eudml.org/doc/108701
ER -

References

top
  1. [1] G. N. ARZHANTSEVA, On quasiconvex subgroups of word hyperbolic groups. Geom. Dedicata, 87 (2001), pp. 191-208. Zbl0994.20036MR1866849
  2. [2] P. DE LA HARPE, Topics in Geometric Group Theory. Chicago Lectures in Mathematics. The University of Chicago Press. Chicago and London (2000). Zbl0965.20025MR1786869
  3. [3] M. J. DUNWOODY, Problem 5 in Combinatorial and Geometric Group Theory. (A. J. Duncan, N. D. Gilbert and J. Howie Eds.), London Math. Soc. Lecture Note Series 204 Cambridge University Press. Cambridge (1995) 322. MR1320269
  4. [4] E. HEWITT - K. A. ROSS, Abstract Harmonic Analysis I. Springer-Verlag. Berlin-Göttingen-Heidelberg (1963). Zbl0115.10603MR156915
  5. [5] S. V. IVANOV - A. YU. OL'SHANSKII, Hyperbolic groups and their quotients of bounded exponents. Trans. A. M. S. 348 (1996), pp. 2091-2138. Zbl0876.20023MR1327257
  6. [6] A. V. JATEGAONKAR, Integral group rings of polycyclic-by-finite groups. J. Pure Appl. Algebra 4 (1974), pp. 337-343. Zbl0297.20013MR344345
  7. [7] G. A. NIBLO, Double coset decomposition of groups. J. Algebra 220 (1999), pp. 512-518. Zbl0944.20024MR1717355
  8. [8] J. E. ROSEBLADE, Applications of Artin-Rees lemma to group rings. Symposia Math. 17 (1976), pp. 471-478. Zbl0333.16009MR407119
  9. [9] B. A. F. WEHRFRITZ, Infinite Linear Groups. Springer-Verlag. BerlinHeidelberg-New York (1973). Zbl0261.20038MR335656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.