Cell decomposition for two dimensional local fields

Ali Bleybel

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 117, page 51-67
  • ISSN: 0041-8994

How to cite

top

Bleybel, Ali. "Cell decomposition for two dimensional local fields." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 51-67. <http://eudml.org/doc/108715>.

@article{Bleybel2007,
author = {Bleybel, Ali},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Cell decomposition; Laurent series over -adic fields},
language = {eng},
pages = {51-67},
publisher = {Seminario Matematico of the University of Padua},
title = {Cell decomposition for two dimensional local fields},
url = {http://eudml.org/doc/108715},
volume = {117},
year = {2007},
}

TY - JOUR
AU - Bleybel, Ali
TI - Cell decomposition for two dimensional local fields
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 51
EP - 67
LA - eng
KW - Cell decomposition; Laurent series over -adic fields
UR - http://eudml.org/doc/108715
ER -

References

top
  1. [1] R. CLUCKERS - F. LOESER, Constructible motivic functions and motivic integration, preprint, math. arxiv 2004. Zbl1179.14011MR2403394
  2. [2] J. DENEF, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), pp. 1-23. Zbl0537.12011MR751129
  3. [3] J. DENEF, p-adic semi-algebraic sets and cell decomposition, J. reine angew. Math. 369 (1986), pp. 154-166. Zbl0584.12015MR850632
  4. [4] I. FESENKO, Measure, integration and elements of harmonic analysis on generalized loop spaces, www.maths.nott.ac.uk/personal/ibf/aoh.pdf, 2003. Zbl1203.11080MR2276855
  5. [5] E. HRUSHOVSKI - D. KAZHDAN, Integration in valued fields, preprint, math.arxiv 2005. Zbl1136.03025MR2263194
  6. [6] J. IGUSA, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14. International Press, Cambridge, MA, 2000. Zbl0959.11047MR1743467
  7. [7] A. MACINTYREOn definable subsets of p-adic fields, J. Symb. Logic 41 (1976), pp. 605-610. Zbl0362.02046MR485335
  8. [8] J. PAS, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. math., 399 (1989), pp. 137-172. Zbl0666.12014MR1004136
  9. [9] P. SCOWCROFT - L. VAN DEN DRIES, On the structure of semialgebraic sets over p-adic fields, J. Symbolic Logic, 53 (1988), pp. 1138-1164. Zbl0692.14014MR973105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.