Cell decomposition for two dimensional local fields
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 117, page 51-67
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBleybel, Ali. "Cell decomposition for two dimensional local fields." Rendiconti del Seminario Matematico della Università di Padova 117 (2007): 51-67. <http://eudml.org/doc/108715>.
@article{Bleybel2007,
author = {Bleybel, Ali},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Cell decomposition; Laurent series over -adic fields},
language = {eng},
pages = {51-67},
publisher = {Seminario Matematico of the University of Padua},
title = {Cell decomposition for two dimensional local fields},
url = {http://eudml.org/doc/108715},
volume = {117},
year = {2007},
}
TY - JOUR
AU - Bleybel, Ali
TI - Cell decomposition for two dimensional local fields
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 117
SP - 51
EP - 67
LA - eng
KW - Cell decomposition; Laurent series over -adic fields
UR - http://eudml.org/doc/108715
ER -
References
top- [1] R. CLUCKERS - F. LOESER, Constructible motivic functions and motivic integration, preprint, math. arxiv 2004. Zbl1179.14011MR2403394
- [2] J. DENEF, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), pp. 1-23. Zbl0537.12011MR751129
- [3] J. DENEF, p-adic semi-algebraic sets and cell decomposition, J. reine angew. Math. 369 (1986), pp. 154-166. Zbl0584.12015MR850632
- [4] I. FESENKO, Measure, integration and elements of harmonic analysis on generalized loop spaces, www.maths.nott.ac.uk/personal/ibf/aoh.pdf, 2003. Zbl1203.11080MR2276855
- [5] E. HRUSHOVSKI - D. KAZHDAN, Integration in valued fields, preprint, math.arxiv 2005. Zbl1136.03025MR2263194
- [6] J. IGUSA, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14. International Press, Cambridge, MA, 2000. Zbl0959.11047MR1743467
- [7] A. MACINTYREOn definable subsets of p-adic fields, J. Symb. Logic 41 (1976), pp. 605-610. Zbl0362.02046MR485335
- [8] J. PAS, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. math., 399 (1989), pp. 137-172. Zbl0666.12014MR1004136
- [9] P. SCOWCROFT - L. VAN DEN DRIES, On the structure of semialgebraic sets over p-adic fields, J. Symbolic Logic, 53 (1988), pp. 1138-1164. Zbl0692.14014MR973105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.