Some new Formulas involving Γ q Functions

Thomas Ernst

Rendiconti del Seminario Matematico della Università di Padova (2007)

  • Volume: 118, page 159-188
  • ISSN: 0041-8994

How to cite

top

Ernst, Thomas. "Some new Formulas involving $\Gamma _q$Functions." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 159-188. <http://eudml.org/doc/108720>.

@article{Ernst2007,
author = {Ernst, Thomas},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {159-188},
publisher = {Seminario Matematico of the University of Padua},
title = {Some new Formulas involving $\Gamma _q$Functions},
url = {http://eudml.org/doc/108720},
volume = {118},
year = {2007},
}

TY - JOUR
AU - Ernst, Thomas
TI - Some new Formulas involving $\Gamma _q$Functions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 159
EP - 188
LA - eng
UR - http://eudml.org/doc/108720
ER -

References

top
  1. [1] H. ALZER, Sharp bounds for the ratio of q-gamma functions. Math. Nachr., 222 (2001), pp. 5-14. Zbl0968.33004MR1812485
  2. [2] G. E. ANDREWS, On the q-analog of Kummer's theorem and applications. Duke Math. J., 40 (1973), Zbl0266.33003MR320375
  3. [3] G. E. ANDREWS, On q-analogues of the Watson and Whipple summations. SIAM J. Math. Anal., 7 no. 3 (1976), pp. 332-336. Zbl0339.33007MR399529
  4. [4] G.E. ANDREWS - R. ASKEY - R. ROY, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. Zbl0920.33001MR1688958
  5. [5] C.H. ASHTON, Die Heineschen O-Funktionen. Dissertation Muenchen 1909. JFM41.0515.02
  6. [6] N.M. ATAKISHIYEV - M.K. ATAKISHIYEVA, A q-analogue of the Euler gamma integral (Russian, English) Theor. Math. Phys., 129, no. 1 (2001), pp. 1325-1334. Zbl1028.33011MR1904745
  7. [7] W.N. BAILEY, Generalized hypergeometric series. Cambridge 1935, reprinted by Stechert-Hafner, New York, 1964. Zbl0011.02303MR185155JFM61.0406.01
  8. [8] W. N. BAILEY, On the sum of a terminating 3F2(1). Quart. J. Math., Oxford Ser. (2) 4 (1953), pp. 237-240. Zbl0051.30803MR57381
  9. [9] W. A. BEYER - J. D. LOUCK - P. R. STEIN, Group theoretical basis of some identities for the generalized hypergeometric series. J. Math. Phys., 28, no. 3 (1987), pp. 497-508. Zbl0651.40003MR877220
  10. [10] T.W. CHAUNDY, Expansions of hypergeometric functions. Quart. J. Math., Oxford Ser., 13 (1942), pp. 159-171. Zbl0063.00807MR7819
  11. [11] J.A. DAUM, Basic hypergeometric series, Thesis, Lincoln, Nebraska 1941. 
  12. [12] T. ERNST, The history of q-calculus and a new method, Uppsala, 2000. 
  13. [13] T. ERNST, Some results for q-functions of many variables. Rendiconti di Padova, 112 (2004), pp. 199-235. Zbl1167.33308MR2109962
  14. [14] T. ERNST, q-Generating functions for one and two variables. Simon Stevin, 12 no. 4 (2005), pp. 589-605. Zbl1132.33335MR2206002
  15. [15] T. ERNST, q-Bernoulli and q-Euler Polynomials, An Umbral Approach. International journal of difference equations and dynamical systems. To be published 2006. Zbl1116.39013MR2296498
  16. [16] L. EULER, Introductio in Analysin Infinitorum, T1, Lausanne 1748. 
  17. [17] G. GASPER - M. RAHMAN, Basic hypergeometric series. Cambridge 1990. Zbl0695.33001MR1052153
  18. [18] G. GASPER - M. RAHMAN, Basic hypergeometric series, 2nd ed., Cambridge, 2004. Zbl1129.33005MR2128719
  19. [19] C. F. GAUSS, Werke 2, 1876, pp. 9-45. 
  20. [20] I.M. GELFAND - M.I. GRAEV - V.S. RETAKH, General hypergeometric systems of equations and series of hypergeometric type, Russian Math. Surveys, 47, no. 4 (1992), pp. 1-88. Zbl0798.33010MR1208882
  21. [21] V. GUO, Elementary proofs of some q-identities of Jackson and AndrewsJain. Discrete Math., 295, no. 1-3 (2005), pp. 63-74. Zbl1080.33015MR2139126
  22. [22] W. HAHN, Beiträge zur Theorie der Heineschen Reihen. Mathematische Nachrichten, 2 (1949), pp. 340-379. Zbl0033.05703MR35344
  23. [23] W. HAHN, Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen. Mathematische Nachrichten, 3 (1950), pp. 257-294. Zbl0038.05002MR40557
  24. [24] E. HEINE, Über die Reihe... J. reine angew. Math., 32 (1846), pp. 210-212. 
  25. [25] M.E.H. ISMAIL - M.E. MULDOON, Inequalities and monotonicity properties for gamma and q-gamma functions. Approximation and computation (West Lafayette, IN, 1993), pp. 309-323, Internat. Ser. Numer. Math., 119, Birkh…user Boston, Boston, MA, 1994. Zbl0819.33001MR1333625
  26. [26] J. JENSEN, Studier over en Afhandling af Gauss. (Studien über eine Abhandlung von Gauss.). (Danish) Nyt Tidsskr. for Math. 29 (1918), pp. 29-36. Zbl46.0339.02JFM46.0339.02
  27. [27] Y. KIM - A. RATHIE - C. LEE, On q-Gauss's second summation theorem. Far East J. Math. Sci. (FJMS) 17, no. 3 (2005), pp. 299-303. Zbl1081.33031MR2183187
  28. [28] E.E. KUMMER, Über die hypergeometrische Reihe ... J. für Math., 15 (1836), pp. 39-83 and pp. 127-172. 
  29. [29] B A, KUPERSHMIDT, q-Newton Binomial: from Euler to Gauss, J. Nonlinear Math. Phys. 7, no. 2 (2000), pp. 244-262. Zbl0955.33012MR1763640
  30. [30] G. LAURICELLA, Sulle Funzioni Ipergeometriche a più Variabili. Rend. Circ. Mat. Palermo, 7 (1893), pp. 111-158. JFM25.0756.01
  31. [31] HJ. MELLIN, Abriss einer einheitlichen Theorie der Gamma und der hypergeometrischen Funktionen. Mathematische Annalen, 68 (1910), pp. 305-337. Zbl41.0500.04MR1511564JFM41.0500.04
  32. [32] P. NALLI, Sopra un procedimento di calcolo analogo alla integrazione. (Italian) Palermo Rend., 47 (1923), 337-374 Zbl49.0196.02JFM49.0196.02
  33. [33] A.B. OLDE DAALHUIS, Asymptotic expansions for q-gamma, q-exponential, and q-Bessel functions. J. Math. Anal. Appl., 186, no. 3 (1994), 896-913. Zbl0809.33008MR1293861
  34. [34] R. PANDA, Some multiple series transformations. J naÅnabha Sect. A 4 (1974) 165-168. Zbl0297.33023MR382745
  35. [35] M. PETKOVSEK - H. WILF - D. ZEILBERGER, A=B, A.K. Peters 1996. MR1379802
  36. [36] E. D. RAINVILLE, Special functions, Bronx, N.Y., 1971. Zbl0231.33001MR393590
  37. [37] B.M. SINGHAL, On the reducibility of Lauricella's function FD. J naÅnabha A 4 (1974), pp. 163-164. Zbl0281.33012MR382744
  38. [38] RAO K. SRINIVASA - J. VAN DER JEUGT - J. RAYNAL - R. JAGANNATHAN - V. RAJESWARI, Group theoretical basis for the terminating 3F2(1) series. J. Phys. A, 25, no. 4 (1992), pp. 861-876. Zbl0761.33002MR1151088
  39. [39] H. M. SRIVASTAVA, Sums of a certain class of q-series. Proc. Japan Acad. Ser. A Math. Sci., 65, no. 1 (1989), pp. 8-11 Zbl0653.33004MR1011827
  40. [40] J. THOMAE, Les séries Heinéennes supérieures. Ann. Mat. pura appl. Bologna, II 4 (1871), pp. 105-139. JFM03.0108.01
  41. [41] J. THOMAE, Abriss einer Theorie der Functionen einer complexen Veraenderlichen und der Thetafunctionen. Zweite vermehrte Auflage. Halle a. S. Nebert. (1873). JFM05.0218.01
  42. [42] J. THOMAE, Über die Funktionen welche durch Reihen von der Form dargestellt werden: J. reine angew. Math., 87 (1879), pp. 26-73. 
  43. [43] J. VAN DER JEUGT - K. SRINIVASA RAO, Invariance groups of transformations of basic hypergeometric series. J. Math. Phys. 40, no. 12 (1999), pp. 6692-6700. Zbl0956.33012MR1725881
  44. [44] M. WARD, A Calculus of Sequences, Amer. J. Math., 58 (1936), pp. 255-266. Zbl62.0408.03MR1507149JFM62.0408.03
  45. [45] G. N. WATSON, A note on generalized hypergeometric series. Proceedings L. M. S. (2) 23, XIII-XV. (1925) Zbl51.0283.04JFM51.0283.04
  46. [46] G. N. WATSON, A new proof of the Rogers-Ramanujan identities. J. London Math. Soc. 4 (1929), pp. 4-9. Zbl55.0219.09JFM55.0219.09
  47. [47] G. N. WATSON, The final problem: an account of the mock theta functions. J. London Math. Soc. 11 (1936), pp. 55-80. Zbl0013.11502MR1862757JFM62.0430.02
  48. [48] F. J. W. WHIPPLE, A group of generalized hypergeometric series: relations between 120 allied series of the type 3F2(a; b; c; d; e). Proc. London Math. Soc. (2) 23 (1925), pp. 104-114. JFM50.0259.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.