Some new Formulas involving Functions
Rendiconti del Seminario Matematico della Università di Padova (2007)
- Volume: 118, page 159-188
- ISSN: 0041-8994
Access Full Article
topHow to cite
topErnst, Thomas. "Some new Formulas involving $\Gamma _q$Functions." Rendiconti del Seminario Matematico della Università di Padova 118 (2007): 159-188. <http://eudml.org/doc/108720>.
@article{Ernst2007,
author = {Ernst, Thomas},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {159-188},
publisher = {Seminario Matematico of the University of Padua},
title = {Some new Formulas involving $\Gamma _q$Functions},
url = {http://eudml.org/doc/108720},
volume = {118},
year = {2007},
}
TY - JOUR
AU - Ernst, Thomas
TI - Some new Formulas involving $\Gamma _q$Functions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2007
PB - Seminario Matematico of the University of Padua
VL - 118
SP - 159
EP - 188
LA - eng
UR - http://eudml.org/doc/108720
ER -
References
top- [1] H. ALZER, Sharp bounds for the ratio of q-gamma functions. Math. Nachr., 222 (2001), pp. 5-14. Zbl0968.33004MR1812485
- [2] G. E. ANDREWS, On the q-analog of Kummer's theorem and applications. Duke Math. J., 40 (1973), Zbl0266.33003MR320375
- [3] G. E. ANDREWS, On q-analogues of the Watson and Whipple summations. SIAM J. Math. Anal., 7 no. 3 (1976), pp. 332-336. Zbl0339.33007MR399529
- [4] G.E. ANDREWS - R. ASKEY - R. ROY, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. Zbl0920.33001MR1688958
- [5] C.H. ASHTON, Die Heineschen O-Funktionen. Dissertation Muenchen 1909. JFM41.0515.02
- [6] N.M. ATAKISHIYEV - M.K. ATAKISHIYEVA, A q-analogue of the Euler gamma integral (Russian, English) Theor. Math. Phys., 129, no. 1 (2001), pp. 1325-1334. Zbl1028.33011MR1904745
- [7] W.N. BAILEY, Generalized hypergeometric series. Cambridge 1935, reprinted by Stechert-Hafner, New York, 1964. Zbl0011.02303MR185155JFM61.0406.01
- [8] W. N. BAILEY, On the sum of a terminating 3F2(1). Quart. J. Math., Oxford Ser. (2) 4 (1953), pp. 237-240. Zbl0051.30803MR57381
- [9] W. A. BEYER - J. D. LOUCK - P. R. STEIN, Group theoretical basis of some identities for the generalized hypergeometric series. J. Math. Phys., 28, no. 3 (1987), pp. 497-508. Zbl0651.40003MR877220
- [10] T.W. CHAUNDY, Expansions of hypergeometric functions. Quart. J. Math., Oxford Ser., 13 (1942), pp. 159-171. Zbl0063.00807MR7819
- [11] J.A. DAUM, Basic hypergeometric series, Thesis, Lincoln, Nebraska 1941.
- [12] T. ERNST, The history of q-calculus and a new method, Uppsala, 2000.
- [13] T. ERNST, Some results for q-functions of many variables. Rendiconti di Padova, 112 (2004), pp. 199-235. Zbl1167.33308MR2109962
- [14] T. ERNST, q-Generating functions for one and two variables. Simon Stevin, 12 no. 4 (2005), pp. 589-605. Zbl1132.33335MR2206002
- [15] T. ERNST, q-Bernoulli and q-Euler Polynomials, An Umbral Approach. International journal of difference equations and dynamical systems. To be published 2006. Zbl1116.39013MR2296498
- [16] L. EULER, Introductio in Analysin Infinitorum, T1, Lausanne 1748.
- [17] G. GASPER - M. RAHMAN, Basic hypergeometric series. Cambridge 1990. Zbl0695.33001MR1052153
- [18] G. GASPER - M. RAHMAN, Basic hypergeometric series, 2nd ed., Cambridge, 2004. Zbl1129.33005MR2128719
- [19] C. F. GAUSS, Werke 2, 1876, pp. 9-45.
- [20] I.M. GELFAND - M.I. GRAEV - V.S. RETAKH, General hypergeometric systems of equations and series of hypergeometric type, Russian Math. Surveys, 47, no. 4 (1992), pp. 1-88. Zbl0798.33010MR1208882
- [21] V. GUO, Elementary proofs of some q-identities of Jackson and AndrewsJain. Discrete Math., 295, no. 1-3 (2005), pp. 63-74. Zbl1080.33015MR2139126
- [22] W. HAHN, Beiträge zur Theorie der Heineschen Reihen. Mathematische Nachrichten, 2 (1949), pp. 340-379. Zbl0033.05703MR35344
- [23] W. HAHN, Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen. Mathematische Nachrichten, 3 (1950), pp. 257-294. Zbl0038.05002MR40557
- [24] E. HEINE, Über die Reihe... J. reine angew. Math., 32 (1846), pp. 210-212.
- [25] M.E.H. ISMAIL - M.E. MULDOON, Inequalities and monotonicity properties for gamma and q-gamma functions. Approximation and computation (West Lafayette, IN, 1993), pp. 309-323, Internat. Ser. Numer. Math., 119, Birkh user Boston, Boston, MA, 1994. Zbl0819.33001MR1333625
- [26] J. JENSEN, Studier over en Afhandling af Gauss. (Studien über eine Abhandlung von Gauss.). (Danish) Nyt Tidsskr. for Math. 29 (1918), pp. 29-36. Zbl46.0339.02JFM46.0339.02
- [27] Y. KIM - A. RATHIE - C. LEE, On q-Gauss's second summation theorem. Far East J. Math. Sci. (FJMS) 17, no. 3 (2005), pp. 299-303. Zbl1081.33031MR2183187
- [28] E.E. KUMMER, Über die hypergeometrische Reihe ... J. für Math., 15 (1836), pp. 39-83 and pp. 127-172.
- [29] B A, KUPERSHMIDT, q-Newton Binomial: from Euler to Gauss, J. Nonlinear Math. Phys. 7, no. 2 (2000), pp. 244-262. Zbl0955.33012MR1763640
- [30] G. LAURICELLA, Sulle Funzioni Ipergeometriche a più Variabili. Rend. Circ. Mat. Palermo, 7 (1893), pp. 111-158. JFM25.0756.01
- [31] HJ. MELLIN, Abriss einer einheitlichen Theorie der Gamma und der hypergeometrischen Funktionen. Mathematische Annalen, 68 (1910), pp. 305-337. Zbl41.0500.04MR1511564JFM41.0500.04
- [32] P. NALLI, Sopra un procedimento di calcolo analogo alla integrazione. (Italian) Palermo Rend., 47 (1923), 337-374 Zbl49.0196.02JFM49.0196.02
- [33] A.B. OLDE DAALHUIS, Asymptotic expansions for q-gamma, q-exponential, and q-Bessel functions. J. Math. Anal. Appl., 186, no. 3 (1994), 896-913. Zbl0809.33008MR1293861
- [34] R. PANDA, Some multiple series transformations. J naÅnabha Sect. A 4 (1974) 165-168. Zbl0297.33023MR382745
- [35] M. PETKOVSEK - H. WILF - D. ZEILBERGER, A=B, A.K. Peters 1996. MR1379802
- [36] E. D. RAINVILLE, Special functions, Bronx, N.Y., 1971. Zbl0231.33001MR393590
- [37] B.M. SINGHAL, On the reducibility of Lauricella's function FD. J naÅnabha A 4 (1974), pp. 163-164. Zbl0281.33012MR382744
- [38] RAO K. SRINIVASA - J. VAN DER JEUGT - J. RAYNAL - R. JAGANNATHAN - V. RAJESWARI, Group theoretical basis for the terminating 3F2(1) series. J. Phys. A, 25, no. 4 (1992), pp. 861-876. Zbl0761.33002MR1151088
- [39] H. M. SRIVASTAVA, Sums of a certain class of q-series. Proc. Japan Acad. Ser. A Math. Sci., 65, no. 1 (1989), pp. 8-11 Zbl0653.33004MR1011827
- [40] J. THOMAE, Les séries Heinéennes supérieures. Ann. Mat. pura appl. Bologna, II 4 (1871), pp. 105-139. JFM03.0108.01
- [41] J. THOMAE, Abriss einer Theorie der Functionen einer complexen Veraenderlichen und der Thetafunctionen. Zweite vermehrte Auflage. Halle a. S. Nebert. (1873). JFM05.0218.01
- [42] J. THOMAE, Über die Funktionen welche durch Reihen von der Form dargestellt werden: J. reine angew. Math., 87 (1879), pp. 26-73.
- [43] J. VAN DER JEUGT - K. SRINIVASA RAO, Invariance groups of transformations of basic hypergeometric series. J. Math. Phys. 40, no. 12 (1999), pp. 6692-6700. Zbl0956.33012MR1725881
- [44] M. WARD, A Calculus of Sequences, Amer. J. Math., 58 (1936), pp. 255-266. Zbl62.0408.03MR1507149JFM62.0408.03
- [45] G. N. WATSON, A note on generalized hypergeometric series. Proceedings L. M. S. (2) 23, XIII-XV. (1925) Zbl51.0283.04JFM51.0283.04
- [46] G. N. WATSON, A new proof of the Rogers-Ramanujan identities. J. London Math. Soc. 4 (1929), pp. 4-9. Zbl55.0219.09JFM55.0219.09
- [47] G. N. WATSON, The final problem: an account of the mock theta functions. J. London Math. Soc. 11 (1936), pp. 55-80. Zbl0013.11502MR1862757JFM62.0430.02
- [48] F. J. W. WHIPPLE, A group of generalized hypergeometric series: relations between 120 allied series of the type 3F2(a; b; c; d; e). Proc. London Math. Soc. (2) 23 (1925), pp. 104-114. JFM50.0259.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.