Semitopological homomorphisms
Rendiconti del Seminario Matematico della Università di Padova (2008)
- Volume: 120, page 79-126
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGiordano Bruno, Anna. "Semitopological homomorphisms." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 79-126. <http://eudml.org/doc/108749>.
@article{GiordanoBruno2008,
author = {Giordano Bruno, Anna},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {semitopological homomorphism; open mapping theorem; pull back; d-extension; (strongly) A-open; (strongly) -open; quasihomomorphism; pull back; permanence properties},
language = {eng},
pages = {79-126},
publisher = {Seminario Matematico of the University of Padua},
title = {Semitopological homomorphisms},
url = {http://eudml.org/doc/108749},
volume = {120},
year = {2008},
}
TY - JOUR
AU - Giordano Bruno, Anna
TI - Semitopological homomorphisms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 79
EP - 126
LA - eng
KW - semitopological homomorphism; open mapping theorem; pull back; d-extension; (strongly) A-open; (strongly) -open; quasihomomorphism; pull back; permanence properties
UR - http://eudml.org/doc/108749
ER -
References
top- [1] V. I. ARNAUTOV, Semitopological isomorphisms of topological rings (Russian), Mat. Issled., 4 (1969) vyp. 2 (12), pp. 3-16. Zbl0232.16031MR254104
- [2] V. I. ARNAUTOV, Semitopological isomorphism of topological groups, Bul. Acad. SÎtiintÎe Repub. Mold. Mat., no. 1 (2004), pp. 15-25. Zbl1066.22001MR2097592
- [3] D. DIKRANJAN - A. GIORDANO BRUNO, Arnautov's problems about semitopological isomorphisms, to appear in Appl. General Topology. Zbl1213.22003
- [4] D. DIKRANJAN - A. GIORDANO BRUNO - C. MILAN, Weakly metrizable pseudocompact groups, Appl. General Topology, 7, no. 1 (2006), pp. 1-39. Zbl1127.22003MR2284933
- [5] D. DIKRANJAN - I. PRODANOV - L. STOYANOV, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, Vol. 130, Marcel Dekker Inc., New York-Basel (1989). Zbl0687.22001MR1015288
- [6] R. ENGELKING, General Topology, Heldermann Verlag, Berlin (1989). Zbl0684.54001MR1039321
- [7] L. FUCHS, Infinite abelian groups, vol. I, Academic Press New York and London (1973). Zbl0209.05503MR349869
- [8] F. CABELLO SÁNCHEZ, Quasi-homomorphisms, Fund. Math., 178, no. 3 (2003), pp. 255-270. Zbl1051.39032MR2030485
- [9] A. D. TAǏMANOV, Topologizable groups. II. (Russian) Sibirsk. Mat. Zh., 19, no. 5 (1978), pp. 1201-1203, 1216. (English translation: Siberian Math. J. 19, no. 5 (1978), pp. 848-850.) MR508510
- [10] M. G. TKACHENKO, Completeness of topological groups (Russian), Sibirsk. Mat. Zh., 25, no. 1 (1984), pp. 146-158. Zbl0536.22003MR732774
- [11] M. G. TKACHENKO, Some properties of free topological groups (Russian), Mat. Zametki, 37, no. 1 (1985), pp. 110-118, 139. Zbl0568.22001MR792240
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.