Semitopological homomorphisms

Anna Giordano Bruno

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 120, page 79-126
  • ISSN: 0041-8994

How to cite

top

Giordano Bruno, Anna. "Semitopological homomorphisms." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 79-126. <http://eudml.org/doc/108749>.

@article{GiordanoBruno2008,
author = {Giordano Bruno, Anna},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {semitopological homomorphism; open mapping theorem; pull back; d-extension; (strongly) A-open; (strongly) -open; quasihomomorphism; pull back; permanence properties},
language = {eng},
pages = {79-126},
publisher = {Seminario Matematico of the University of Padua},
title = {Semitopological homomorphisms},
url = {http://eudml.org/doc/108749},
volume = {120},
year = {2008},
}

TY - JOUR
AU - Giordano Bruno, Anna
TI - Semitopological homomorphisms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 79
EP - 126
LA - eng
KW - semitopological homomorphism; open mapping theorem; pull back; d-extension; (strongly) A-open; (strongly) -open; quasihomomorphism; pull back; permanence properties
UR - http://eudml.org/doc/108749
ER -

References

top
  1. [1] V. I. ARNAUTOV, Semitopological isomorphisms of topological rings (Russian), Mat. Issled., 4 (1969) vyp. 2 (12), pp. 3-16. Zbl0232.16031MR254104
  2. [2] V. I. ARNAUTOV, Semitopological isomorphism of topological groups, Bul. Acad. SÎtiintÎe Repub. Mold. Mat., no. 1 (2004), pp. 15-25. Zbl1066.22001MR2097592
  3. [3] D. DIKRANJAN - A. GIORDANO BRUNO, Arnautov's problems about semitopological isomorphisms, to appear in Appl. General Topology. Zbl1213.22003
  4. [4] D. DIKRANJAN - A. GIORDANO BRUNO - C. MILAN, Weakly metrizable pseudocompact groups, Appl. General Topology, 7, no. 1 (2006), pp. 1-39. Zbl1127.22003MR2284933
  5. [5] D. DIKRANJAN - I. PRODANOV - L. STOYANOV, Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, Vol. 130, Marcel Dekker Inc., New York-Basel (1989). Zbl0687.22001MR1015288
  6. [6] R. ENGELKING, General Topology, Heldermann Verlag, Berlin (1989). Zbl0684.54001MR1039321
  7. [7] L. FUCHS, Infinite abelian groups, vol. I, Academic Press New York and London (1973). Zbl0209.05503MR349869
  8. [8] F. CABELLO SÁNCHEZ, Quasi-homomorphisms, Fund. Math., 178, no. 3 (2003), pp. 255-270. Zbl1051.39032MR2030485
  9. [9] A. D. TAǏMANOV, Topologizable groups. II. (Russian) Sibirsk. Mat. Zh., 19, no. 5 (1978), pp. 1201-1203, 1216. (English translation: Siberian Math. J. 19, no. 5 (1978), pp. 848-850.) MR508510
  10. [10] M. G. TKACHENKO, Completeness of topological groups (Russian), Sibirsk. Mat. Zh., 25, no. 1 (1984), pp. 146-158. Zbl0536.22003MR732774
  11. [11] M. G. TKACHENKO, Some properties of free topological groups (Russian), Mat. Zametki, 37, no. 1 (1985), pp. 110-118, 139. Zbl0568.22001MR792240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.