Artin formalism for Selberg zeta functions of co-finite Kleinian groups
Eliot Brenner[1]; Florin Spinu[2]
- [1] University of Minnesota 206 Church Street SE Minneapolis USA, 55455
- [2] Johns Hopkins University Baltimore USA, 21218
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 1, page 59-75
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBrenner, Eliot, and Spinu, Florin. "Artin formalism for Selberg zeta functions of co-finite Kleinian groups." Journal de Théorie des Nombres de Bordeaux 21.1 (2009): 59-75. <http://eudml.org/doc/10876>.
@article{Brenner2009,
abstract = {Let $\Gamma \backslash \mathbb\{H\}^3$ be a finite-volume quotient of the upper-half space, where $\Gamma \subset \{\rm SL\}(2,\mathbb\{C\})$ is a discrete subgroup. To a finite dimensional unitary representation $\chi $ of $\Gamma $ one associates the Selberg zeta function $Z(s;\Gamma ;\chi )$. In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if $\tilde\{\Gamma \}$ is a finite index group extension of $\Gamma $ in $\{\rm SL\}(2,\mathbb\{C\})$, and $\pi =\{\rm Ind\}_\{\Gamma \}^\{\tilde\{\Gamma \}\}\chi $ is the induced representation, then $Z(s;\Gamma ;\chi )=Z(s;\tilde\{\Gamma \};\pi )$. In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely $\phi (s;\Gamma ;\chi )=\phi (s;\tilde\{\Gamma \};\pi )$, for an appropriate normalization of the Eisenstein series.},
affiliation = {University of Minnesota 206 Church Street SE Minneapolis USA, 55455; Johns Hopkins University Baltimore USA, 21218},
author = {Brenner, Eliot, Spinu, Florin},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Artin Formalism; Selberg Zeta function; Kleinian groups; Fuchsian groups hyperbolic 3-manifolds; scattering matrix; Eisenstein series; Artin formalism; Fuchsian groups; hyperbolic 3-manifolds},
language = {eng},
number = {1},
pages = {59-75},
publisher = {Université Bordeaux 1},
title = {Artin formalism for Selberg zeta functions of co-finite Kleinian groups},
url = {http://eudml.org/doc/10876},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Brenner, Eliot
AU - Spinu, Florin
TI - Artin formalism for Selberg zeta functions of co-finite Kleinian groups
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 1
SP - 59
EP - 75
AB - Let $\Gamma \backslash \mathbb{H}^3$ be a finite-volume quotient of the upper-half space, where $\Gamma \subset {\rm SL}(2,\mathbb{C})$ is a discrete subgroup. To a finite dimensional unitary representation $\chi $ of $\Gamma $ one associates the Selberg zeta function $Z(s;\Gamma ;\chi )$. In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if $\tilde{\Gamma }$ is a finite index group extension of $\Gamma $ in ${\rm SL}(2,\mathbb{C})$, and $\pi ={\rm Ind}_{\Gamma }^{\tilde{\Gamma }}\chi $ is the induced representation, then $Z(s;\Gamma ;\chi )=Z(s;\tilde{\Gamma };\pi )$. In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely $\phi (s;\Gamma ;\chi )=\phi (s;\tilde{\Gamma };\pi )$, for an appropriate normalization of the Eisenstein series.
LA - eng
KW - Artin Formalism; Selberg Zeta function; Kleinian groups; Fuchsian groups hyperbolic 3-manifolds; scattering matrix; Eisenstein series; Artin formalism; Fuchsian groups; hyperbolic 3-manifolds
UR - http://eudml.org/doc/10876
ER -
References
top- E. Brenner, F. Spinu, Artin Formalism, for Kleinian Groups, via Heat Kernel Methods. Submitted to Serge Lang Memorial Volume. Zbl1233.11057
- P. Cohen, P. Sarnak, Lecture notes on Selberg trace formula (unpublished).
- J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Zbl0888.11001MR1483315
- J. Friedman, The Selberg trace formula and Selberg-zeta function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Zeit. 50 (2005), No.4. Zbl1135.11026MR2180383
- J. Friedman, Analogues of the Artin factorization formula for the automorphic scattering matrix and Selberg zeta-function associated to a Kleinian group. Arxiv:math/0702030. MR2415021
- R. Gangolli, G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78 (1980), 1–44. MR571435
- J. Jorgenson, S. Lang, Artin formalism and heat kernels. Jour. Reine. Angew. Math. 447 (1994), 165–280. Zbl0789.11055MR1263173
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. Zbl0072.08201MR88511
- A.B. Venkov, The Artin Takagi formula for Selberg’s zeta-function and the Roelcke conjecture. Soviet Math. Dokl. 20 (1979), No.4, 745–748. Zbl0432.30036
- A. B. Venkov, Spectral Theory of Automorphic Functions. Proceedings of the Steklov Institute of Mathematics 4, 1982. Zbl0501.10029MR692019
- A. B. Venkov, P. Zograf, Analogues of Artin’s factorization in the spectral theory of automorphic functions. Math. USSR Izvestiya 2 (1983), No. 3, 435–443. Zbl0527.10020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.