Commutativity Criterions using Normal Subgroup Lattices
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 122, page 161-169
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBreaz, Simion. "Commutativity Criterions using Normal Subgroup Lattices." Rendiconti del Seminario Matematico della Università di Padova 122 (2009): 161-169. <http://eudml.org/doc/108768>.
@article{Breaz2009,
author = {Breaz, Simion},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Abelian groups; lattices of normal subgroups; commutativity of groups; subgroup lattices},
language = {eng},
pages = {161-169},
publisher = {Seminario Matematico of the University of Padua},
title = {Commutativity Criterions using Normal Subgroup Lattices},
url = {http://eudml.org/doc/108768},
volume = {122},
year = {2009},
}
TY - JOUR
AU - Breaz, Simion
TI - Commutativity Criterions using Normal Subgroup Lattices
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 122
SP - 161
EP - 169
LA - eng
KW - Abelian groups; lattices of normal subgroups; commutativity of groups; subgroup lattices
UR - http://eudml.org/doc/108768
ER -
References
top- [1] D. ARNOLD, Finite Rank Torsion-Free Abelian Groups and Rings, Lecture Notes in Math., 931 (Springer - Verlag, New-York, 1982). Zbl0493.20034MR665251
- [2] R. BRANDL, On groups with certain lattices of normal subgroups, Arch. Math. (Basel), 47 (1986), pp. 6-11. Zbl0599.20036MR855131
- [3] S. BREAZ - GR. CǍLUGǍREANU, Every Abelian group is determined by a subgroup lattice, Stud. Sci. Math. Hung., 45 (2008), pp. 135-137. Zbl1156.20024MR2401171
- [4] M. CURZIO, Una caratterizzazione reticolare dei gruppi abeliani, Rend. Math. e. Appl., 24 (1965), pp. 1-10. Zbl0171.28404MR194518
- [5] L. FUCHS, Infinite Abelian Groups, vol. I, Academic Press, New-York and London, 1970. Zbl0209.05503MR255673
- [6] K. GOODEARL, Power cancellation of groups and modules, Pacific J. Math., 64 (1976), pp. 387-411. Zbl0308.16016MR450334
- [7] K. A. KEARNES - Á. SZENDREI, Groups with identical subgroup lattices in all powers, J. Group Theory, 7 (2004), pp. 385-402. Zbl1071.20028MR2063404
- [8] A. G. KUROSH, The Theory of Groups, Chelsea Publishing Company (NewYork, 1960). Zbl0064.25104MR109842
- [9] E. LUKÁCS - P. P. PÁLFY, Modularity of the subgroup lattice of a direct square, Arch. Math. (Basel), 46 (1986), pp. 18-19. Zbl0998.20500MR829806
- [10] M. D. MILLER, On the lattice of normal subgroups of a direct product, Pacific J. Math., 60 (1975), pp. 153-158. Zbl0295.20043MR399275
- [11] P. P. PÁLFY, Groups and Lattices, Groups St. Andrews 2001 in Oxford. Vol. II, London Math. Soc. Lecture Note Ser., 305, Cambridge Univ. Press (Cambridge, 2003), pp. 428-454. Zbl1085.20508MR2051548
- [12] R. SCHMIDT, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14, de Gruyter (Berlin, 1994). Zbl0843.20003MR1292462
- [13] E. A. WALKER, Cancellation in direct sums of groups, Proc. A.M.S., 7 (1956), pp. 898-902. Zbl0071.25203MR81440
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.