Integral canonical models of Shimura varieties

Mark Kisin[1]

  • [1] Department of Mathematics University of Chicago 5734 S. University Avenue Chicago, IL, 60637, USA

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 2, page 301-312
  • ISSN: 1246-7405

Abstract

top
The aim of these notes is to provide an introduction to the subject of integral canonical models of Shimura varieties, and then to sketch a proof of the existence of such models for Shimura varieties of Hodge and, more generally, abelian type. For full details the reader is refered to [Ki 3].

How to cite

top

Kisin, Mark. "Integral canonical models of Shimura varieties." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 301-312. <http://eudml.org/doc/10882>.

@article{Kisin2009,
abstract = {The aim of these notes is to provide an introduction to the subject of integral canonical models of Shimura varieties, and then to sketch a proof of the existence of such models for Shimura varieties of Hodge and, more generally, abelian type. For full details the reader is refered to [Ki 3].},
affiliation = {Department of Mathematics University of Chicago 5734 S. University Avenue Chicago, IL, 60637, USA},
author = {Kisin, Mark},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {2},
pages = {301-312},
publisher = {Université Bordeaux 1},
title = {Integral canonical models of Shimura varieties},
url = {http://eudml.org/doc/10882},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Kisin, Mark
TI - Integral canonical models of Shimura varieties
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 301
EP - 312
AB - The aim of these notes is to provide an introduction to the subject of integral canonical models of Shimura varieties, and then to sketch a proof of the existence of such models for Shimura varieties of Hodge and, more generally, abelian type. For full details the reader is refered to [Ki 3].
LA - eng
UR - http://eudml.org/doc/10882
ER -

References

top
  1. J-L. Colliot-Thélène, J-J Sansuc, Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244 (1979), 105–134. Zbl0418.14016MR550842
  2. P. Deligne, Variètés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. Automorphic forms, representations and L -functions (Corvallis 1977), Proc. Sympos. Pure Math XXXIII, 247–289, AMS, 1979. Zbl0437.14012MR546620
  3. P. Deligne, Hodge cycles on abelian varieties Hodge cycles motives and Shimura varieties, Lecture notes in math. 900, 9–100, Springer, 1982. Zbl0537.14006
  4. P. Deligne, G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant. Compositio Math. 90 (1994), 59–79. Zbl0826.14027MR1266495
  5. M. Kisin, Crystalline representations and F -crystals. Algebraic geometry and number theory, Progr. Math 253, 459–496, Birkhäuser, Boston, 2006. Zbl1184.11052MR2263197
  6. M. Kisin, Modularity of 2 -adic Barsotti-Tate representations. Preprint 2007. Zbl1304.11043
  7. M. Kisin, Integral models for Shimura varieties of abelian type. Preprint, 2008. Zbl1280.11033
  8. R. Langlands, Some contemporary problems with origins in the Jugendtraum. Mathematical developments arising from Hilbert problems (De Kalb 1974), Proc. Sympos. Pure Math. XXVIII, 401–418, AMS, 1976. Zbl0345.14006MR437500
  9. R. Langlands, M. Rapoport, Shimuravarietäten und Gerben. J. Reine Angew. Math 378 (1987), 113–220. Zbl0615.14014MR895287
  10. J. Milne, The points on a Shimura variety modulo a prime of good reduction. The zeta functions of Picard modular surfaces, 151–253, CRM 1992. Zbl0821.14016MR1155229
  11. J. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles. Automorphic forms, Shimura varieties. and L -functions I (Ann Arbor 1988), Perspectives in Math. 10, 284–414, Academic Press, 1990. Zbl0704.14016MR1044823
  12. J. Milne, On the conjecture of Langlands and Rapoport. Available at arxiv.org, 1995, 31 pages. 
  13. B. Moonen, Models of Shimura varieties in mixed characteristics. Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, 257–350, CUP 1998. Zbl0962.14017MR1696489
  14. T. Springer, Reductive groups. Automorphic forms, representations and L -functions (Corvallis 1977), Proc. Sympos. Pure Math XXXIII, 3–27, AMS 1979. Zbl0416.20034MR546587
  15. G. Prasad; J-K. Yu, On quasi-reductive group schemes. With an appendix by Brian Conrad. J. Algebraic Geom. 15 (2006), 507–549. Zbl1112.14053MR2219847
  16. A. Vasiu, Integral Canonical Models of Shimura Varieties of Preabelian Type. Asian J. Math, 1999, 401–518. Zbl1002.11052MR1796512
  17. A. Vasiu, Integral Canonical Models of Shimura Varieties of Preabelian Type (Fully corrected version). Available at arxiv.org, 2003, 135 pages. MR1796512
  18. A. Vasiu, A motivic conjecture of Milne. Available at arxiv.org, 2003, 46 pages. Zbl1309.14035MR1796512
  19. A. Vasiu, Good reduction of Shimura varieties in arbitrary unramified mixed characteristic I. Available at arxiv.org, 2007, 48 pages. 
  20. A. Vasiu, Good reduction of Shimura varieties in arbitrary unramified mixed characteristic II. Available at arxiv.org, 2007. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.