Problems in additive number theory, II: Linear forms and complementing sets
- [1] Department of Mathematics Lehman College (CUNY) Bronx, NY 10468 and CUNY Graduate Center New York, NY 10016
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 343-355
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNathanson, Melvyn B.. "Problems in additive number theory, II: Linear forms and complementing sets." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 343-355. <http://eudml.org/doc/10885>.
@article{Nathanson2009,
abstract = {Let $\varphi (x_1,\ldots ,x_h,y) = u_1x_1 + \cdots + u_hx_h+vy$ be a linear form with nonzero integer coefficients $u_1,\ldots , u_h, v.$ Let $\mathcal\{A\} = (A_1,\ldots , A_h)$ be an $h$-tuple of finite sets of integers and let $B$ be an infinite set of integers. Define the representation function associated to the form $\varphi $ and the sets $ \mathcal\{A\} $ and $B$ as follows :\[ R^\{(\varphi )\}\_\{ \mathcal\{A\} ,B\}(n) = \text\{card\}\left( \begin\{aligned\} \Bigl \lbrace (a\_1,\ldots , a\_h,b) \in A\_1 &\times \cdots \times A\_h \times B:\\ & \varphi (a\_1, \ldots , a\_h,b ) = n \Bigr \rbrace \end\{aligned\} \right). \]If this representation function is constant, then the set $B$ is periodic and the period of $B$ will be bounded in terms of the diameter of the finite set $\lbrace \varphi (a_1,\ldots ,a_h,0): (a_1,\ldots , a_h) \in A_1 \times \cdots \times A_h\rbrace .$ Other results for complementing sets with respect to linear forms are also proved.},
affiliation = {Department of Mathematics Lehman College (CUNY) Bronx, NY 10468 and CUNY Graduate Center New York, NY 10016},
author = {Nathanson, Melvyn B.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Representation functions; linear forms; complementing sets; tiling by finite sets; inverse problems in additive number theory; representation by linear forms; -complementing pairs},
language = {eng},
number = {2},
pages = {343-355},
publisher = {Université Bordeaux 1},
title = {Problems in additive number theory, II: Linear forms and complementing sets},
url = {http://eudml.org/doc/10885},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Nathanson, Melvyn B.
TI - Problems in additive number theory, II: Linear forms and complementing sets
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 343
EP - 355
AB - Let $\varphi (x_1,\ldots ,x_h,y) = u_1x_1 + \cdots + u_hx_h+vy$ be a linear form with nonzero integer coefficients $u_1,\ldots , u_h, v.$ Let $\mathcal{A} = (A_1,\ldots , A_h)$ be an $h$-tuple of finite sets of integers and let $B$ be an infinite set of integers. Define the representation function associated to the form $\varphi $ and the sets $ \mathcal{A} $ and $B$ as follows :\[ R^{(\varphi )}_{ \mathcal{A} ,B}(n) = \text{card}\left( \begin{aligned} \Bigl \lbrace (a_1,\ldots , a_h,b) \in A_1 &\times \cdots \times A_h \times B:\\ & \varphi (a_1, \ldots , a_h,b ) = n \Bigr \rbrace \end{aligned} \right). \]If this representation function is constant, then the set $B$ is periodic and the period of $B$ will be bounded in terms of the diameter of the finite set $\lbrace \varphi (a_1,\ldots ,a_h,0): (a_1,\ldots , a_h) \in A_1 \times \cdots \times A_h\rbrace .$ Other results for complementing sets with respect to linear forms are also proved.
LA - eng
KW - Representation functions; linear forms; complementing sets; tiling by finite sets; inverse problems in additive number theory; representation by linear forms; -complementing pairs
UR - http://eudml.org/doc/10885
ER -
References
top- András Biró, Divisibility of integer polynomials and tilings of the integers. Acta Arith. 118 (2005), no. 2, 117–127. Zbl1088.11016MR2141045
- Rodney T. Hansen, Complementing pairs of subsets of the plane. Duke Math. J. 36 (1969), 441–449. Zbl0181.05304MR244404
- Mihail N. Kolountzakis, Translational tilings of the integers with long periods. Electron. J. Combin. 10 (2003), Research Paper 22, 9 pp. (electronic). Zbl1107.11016MR1975772
- Jeffrey C. Lagarias, Yang Wang, Tiling the line with translates of one tile? Invent. Math. 124 (1996), no. 1-3, 341–365. Zbl0847.05037MR1369421
- Melvyn B. Nathanson, Complementing sets of -tuples of integers. Proc. Amer. Math. Soc. 34 (1972), 71–72. Zbl0249.10049MR294286
- —, Generalized additive bases, König’s lemma, and the Erdős-Turán conjecture. J. Number Theory 106 (2004), no. 1, 70–78. Zbl1090.11010MR2049593
- Donald J. Newman, Tesselation of integers. J. Number Theory 9 (1977), no. 1, 107–111. Zbl0348.10038MR429720
- Ivan Niven, A characterization of complementing sets of pairs of integers. Duke Math. J. 38 (1971), 193–203. Zbl0214.30503MR274414
- John P. Steinberger, Tilings of the integers can have superpolynomial periods. Preprint, 2005. Zbl1199.11061
- Mario Szegedy, Algorithms to tile the infinite grid with finite clusters. Preprint available on www.cs.rutgers.edu/ szegedy/, 1998.
- Robert Tijdeman, Periodicity and almost-periodicity. More sets, graphs and numbers, Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, pp. 381–405. Zbl1103.68103MR2223402
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.