On entropy optimality of orthogonal design
Statistique et analyse des données (1983)
- Volume: 8, Issue: 2, page 64-80
- ISSN: 0750-7364
Access Full Article
topHow to cite
topReferences
top- (1) H. Cramer, Mathematical Methods of statistics. Princeton 1946 Zbl0985.62001MR16588
- (2) Division of Probability, Department of Mathematics, Beijing University. "On optimality of orthogonal design (I), (II)". Acta Mathematicae Applicatae Sinica n°1, n°2 (1977).
- (1) Raktoe B.L., Hedayat A., Federer W.T. (1981) Factorial Designs, Jonh Wiley & Sons, N.Y., 209 p. Zbl0593.62074MR633756
- (2) Rao C.R. (1973) Some combinatorial problems of arrays and applications to design of experiments. In A Survey of Combinatorial Theory (J.N. Srivastava Ed). p. 349-359 North Holland, Amsterdam. Zbl0274.05017MR376398
- (3) Seber G.A.F. (1964) Orthogonality in Analysis of Variance. Ann. Math. Statist., 35, p.705-710 Zbl0128.13103MR161438
- (4) Mukerjee R. (1980) Orthogonal fractional factorial plans. Calcutta Stat Ass. Bull., 29, p. 143-160. Zbl0482.62066MR614170
- (5) Cheng C.S. (1980) Orthogonal arrays with variable number of symbols. Annals. Statist., 8, p. 447-453. Zbl0431.62048MR560740
- (6) Mukerjee R. (1982) Universal optimality of fractional factorial plans derivable trough orthogonal arrays. Calcutta Stat. Ass. Bull., 31, p. 63-68 Zbl0503.62071MR691753
- (7) Stone M. (1959) Application of a measure of information to the design and comparison of regression experiments. Ann. Math. Statist. 30, p. 55-70. Zbl0094.13602MR106528
- (8) Pazman A. (1980) Some features of the optimal design theory - A survey. Math. Operations forsch. Statist., Ser Statistics, II, p. 415-446. Zbl0445.62084MR596522