Permuting the partitions of a prime
- [1] XLIM UMR 6172 CNRS / Université de Limoges Faculté des Sciences et Techniques 123 avenue Albert Thomas 87060 Limoges Cedex, France
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 455-465
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topVinatier, Stéphane. "Permuting the partitions of a prime." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 455-465. <http://eudml.org/doc/10892>.
@article{Vinatier2009,
abstract = {Given an odd prime number $p$, we characterize the partitions $\underline\{\ell \}$ of $p$ with $p$non negative parts $\ell _0\ge \ell _1\ge \ldots \ge \ell _\{p-1\}\ge 0$ for which there exist permutations $\sigma ,\tau $ of the set $\lbrace 0,\ldots ,p-1\rbrace $ such that $p$ divides $\sum _\{i=0\}^\{p-1\}i\ell _\{\sigma (i)\}$ but does not divide $\sum _\{i=0\}^\{p-1\}i\ell _\{\tau (i)\}$. This happens if and only if the maximal number of equal parts of $\underline\{\ell \}$ is less than $p-2$. The question appeared when dealing with sums of $p$-th powers of resolvents, in order to solve a Galois module structure problem.},
affiliation = {XLIM UMR 6172 CNRS / Université de Limoges Faculté des Sciences et Techniques 123 avenue Albert Thomas 87060 Limoges Cedex, France},
author = {Vinatier, Stéphane},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Partitions of a prime; sums of resolvents; multinomials; permutation of partitions of a prime; sums of th powers of resolvents; Galois module structure problem},
language = {eng},
number = {2},
pages = {455-465},
publisher = {Université Bordeaux 1},
title = {Permuting the partitions of a prime},
url = {http://eudml.org/doc/10892},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Vinatier, Stéphane
TI - Permuting the partitions of a prime
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 455
EP - 465
AB - Given an odd prime number $p$, we characterize the partitions $\underline{\ell }$ of $p$ with $p$non negative parts $\ell _0\ge \ell _1\ge \ldots \ge \ell _{p-1}\ge 0$ for which there exist permutations $\sigma ,\tau $ of the set $\lbrace 0,\ldots ,p-1\rbrace $ such that $p$ divides $\sum _{i=0}^{p-1}i\ell _{\sigma (i)}$ but does not divide $\sum _{i=0}^{p-1}i\ell _{\tau (i)}$. This happens if and only if the maximal number of equal parts of $\underline{\ell }$ is less than $p-2$. The question appeared when dealing with sums of $p$-th powers of resolvents, in order to solve a Galois module structure problem.
LA - eng
KW - Partitions of a prime; sums of resolvents; multinomials; permutation of partitions of a prime; sums of th powers of resolvents; Galois module structure problem
UR - http://eudml.org/doc/10892
ER -
References
top- Andrews G.E., The theory of partitions. Encyclopedia of Mathematics and its applications 2, Addison-Wesley, 1976. Zbl0655.10001MR557013
- Dixon J.D., Mortimer B., Permutation groups. Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996. Zbl0951.20001MR1409812
- Vinatier S., Galois module structure in wealky ramified -extensions. Acta Arithm. 119 (2005), no. 2, 171–186. Zbl1075.11071MR2167720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.