Galois orbits and equidistribution: Manin-Mumford and André-Oort.

Andrei Yafaev[1]

  • [1] University College London Department of Mathematics Gower street, WC1E 6BT, London, United Kingdom

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 2, page 491-500
  • ISSN: 1246-7405

Abstract

top
We overview a unified approach to the André-Oort and Manin-Mumford conjectures based on a combination of Galois-theoretic and ergodic techniques. This paper is based on recent work of Klingler, Ullmo and Yafaev on the André-Oort conjecture, and of Ratazzi and Ullmo on the Manin-Mumford conjecture.

How to cite

top

Yafaev, Andrei. "Galois orbits and equidistribution: Manin-Mumford and André-Oort.." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 491-500. <http://eudml.org/doc/10894>.

@article{Yafaev2009,
abstract = {We overview a unified approach to the André-Oort and Manin-Mumford conjectures based on a combination of Galois-theoretic and ergodic techniques. This paper is based on recent work of Klingler, Ullmo and Yafaev on the André-Oort conjecture, and of Ratazzi and Ullmo on the Manin-Mumford conjecture.},
affiliation = {University College London Department of Mathematics Gower street, WC1E 6BT, London, United Kingdom},
author = {Yafaev, Andrei},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Manin-Mumford conjecture; André-Oort conjecture; abelian varieties; Shimura varieties; special points; equidistribution},
language = {eng},
number = {2},
pages = {491-500},
publisher = {Université Bordeaux 1},
title = {Galois orbits and equidistribution: Manin-Mumford and André-Oort.},
url = {http://eudml.org/doc/10894},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Yafaev, Andrei
TI - Galois orbits and equidistribution: Manin-Mumford and André-Oort.
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 491
EP - 500
AB - We overview a unified approach to the André-Oort and Manin-Mumford conjectures based on a combination of Galois-theoretic and ergodic techniques. This paper is based on recent work of Klingler, Ullmo and Yafaev on the André-Oort conjecture, and of Ratazzi and Ullmo on the Manin-Mumford conjecture.
LA - eng
KW - Manin-Mumford conjecture; André-Oort conjecture; abelian varieties; Shimura varieties; special points; equidistribution
UR - http://eudml.org/doc/10894
ER -

References

top
  1. F. Breuer, Special subvarieties of Drinfeld modular varieties. Preprint, 2009. Available on author’s web-page. 
  2. L. Clozel, E. Ullmo, Equidistribution de sous-variétés spéciales. Annals of Mathematics 161 (2005), 1571–1588. Zbl1099.11031MR2180407
  3. P. Deligne, Variétés de Shimura : interpretation modulaire et techniques de construction de modeles canoniques. In Automorphic Forms, Representations and L -functions. Part II, Vol 33 of Proc. of Symp. in Pure Math., 247–290, AMS. Zbl0437.14012MR546620
  4. B. Klingler, A. Yafaev, The André-Oort conjecture. Preprint, submitted. Available on Klingler’s web-page. 
  5. N. Ratazzi, E. Ullmo, Galois+Equidistribution=Manin-Mumford. Preprint. To appear in the Proceedings of Clay summer school on Arithmetic Geometry, Goettingen, 2007. Available on Ullmo’s web-page. 
  6. E. Ullmo, A. Yafaev, The André-Oort conjecture for products of modular curves. Preprint. To appear in the Proceedings of Clay summer school on Arithmetic Geometry, Goettingen, 2007. Available on Ullmo’s web-page. Zbl1254.11062
  7. E. Ullmo, A. Yafaev, Galois orbits and equidistribution : towards the André-Oort conjecture. Preprint, submitted. Available on Ullmo’s web-page. Zbl1328.11070
  8. R. Pink, A Combination of the Conjectures of Mordell-Lang and André-Oort. In Geometric Methods in Algebra and Number Theory (Bogomolov, F., Tschinkel, Y., Eds.), Progress in Mathematics 253, Birkhäuser, 2005, 251–282. Zbl1200.11041MR2166087
  9. R. Pink, A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang. Preprint available on author’s web-page. Zbl1200.11041
  10. P. Tzermias, The Manin-Mumford conjecture: a brief survey. Bull. London Math. Soc. 32 (2000), no. 6, 641–652. Zbl1073.14525MR1781574
  11. A. Yafaev, A conjecture of Yves André’s. Duke Mathematical Journal. 132 (2006), no. 3, 393–407. Zbl1097.11032MR2219262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.