Régression vectorielle multiple à l'aide d'une généralisation multi-dimensionnelle de l'algorithme de Gauss-Newton

Anestis Antoniadis; Jacques Berruyer

Statistique et analyse des données (1988)

  • Volume: 13, Issue: 3, page 1-13
  • ISSN: 0750-7364

How to cite

top

Antoniadis, Anestis, and Berruyer, Jacques. "Régression vectorielle multiple à l'aide d'une généralisation multi-dimensionnelle de l'algorithme de Gauss-Newton." Statistique et analyse des données 13.3 (1988): 1-13. <http://eudml.org/doc/108969>.

@article{Antoniadis1988,
author = {Antoniadis, Anestis, Berruyer, Jacques},
journal = {Statistique et analyse des données},
language = {fre},
number = {3},
pages = {1-13},
publisher = {Association pour la statistique et ses illustrations},
title = {Régression vectorielle multiple à l'aide d'une généralisation multi-dimensionnelle de l'algorithme de Gauss-Newton},
url = {http://eudml.org/doc/108969},
volume = {13},
year = {1988},
}

TY - JOUR
AU - Antoniadis, Anestis
AU - Berruyer, Jacques
TI - Régression vectorielle multiple à l'aide d'une généralisation multi-dimensionnelle de l'algorithme de Gauss-Newton
JO - Statistique et analyse des données
PY - 1988
PB - Association pour la statistique et ses illustrations
VL - 13
IS - 3
SP - 1
EP - 13
LA - fre
UR - http://eudml.org/doc/108969
ER -

References

top
  1. [1] AITKEN, A. C.On least squares and linear combination of observations, Proc. Roy. Soc. Edin., (1935), Vol. 55, pp. 42. Zbl0011.26603
  2. [2] BALL, W. E. et GROENWEGHE, L. C. D.Determination of best-fit rate constants in chemical kinetics, Ind. & Eng.Chem.Fundamentals, (1966), Vol. 5, pp. 181. 
  3. [3] BARD, Y.Nonlinear parameter estimation, Academic Press, 1974. Zbl0345.62045MR326870
  4. [4] BATES, D. M.The derivative of |X'X| and its uses, Technometrics, (1983), Vol. 25, pp. 373-376. Zbl0518.62063
  5. [5] BATES, D. M. et WATTS, D. G.A relative offset orthogonality criterionfor nonlinear least squares, Technometrics, (1981), Vol. 23, pp. 179-183. Zbl0465.62056
  6. [6] BOX, G. E. P. et DRAPER, N. R.Bayesian estimation of common parameters from several responses, (1965), Biometrika, Vol. 52, pp. 355-365. Zbl0152.17602MR210220
  7. [7] BOX, G. E. P., HUNTER, W. G, MACGREGOR, J. F. et ERJAVEC, J.Some Problems Associated with the Analysis of Multiresponse Data, (1965), Biometrika, Vol. 52, pp. 355-365. Zbl0152.17602
  8. [8] EAKMAN, J. M.Strategy for estimation of rate constants from Isothermal reaction data, (1969), Ind. & Eng.Chem.Fundamentals, Vol. 8, pp. 53-58. 
  9. [9] ERJAVEC, J.Strategy for estimation of rate constants from Isothermal reaction data, (1970), Ind. & Eng.Chem. Fundamentals, Vol. 9, pp. 187-191. 
  10. [10] GILL, P. E. et MURRAY, W.Newton-type methods for unconstrained and lintarly consirained optimization, (1974), Mathematical Programming, Vol. 7, pp. 311-350. Zbl0297.90082MR356503
  11. [11] GOLUB, G. H. et PEREYRA, V.The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, (1973), SIAM J. Numer. Anal., Vol. 10, pp. 413-432. Zbl0258.65045MR336980
  12. [12] LAUGIER, J. et FILHOL, A.An interactive program for the interpretation and simulation of Laue Patterns, (1983), J. Appl. Cryst, Vol. 16, pp. 281-283. 
  13. [13] MARCHESI, M. et al. Minimizing multimodal functions of continuous variables with the simulated annealing algorithm, (1987), ACM Trans. Math. Software, Vol. 13, pp. 262-280. Zbl0632.65075MR918580

NotesEmbed ?

top

You must be logged in to post comments.