Representation of finite abelian group elements by subsequence sums
David J. Grynkiewicz[1]; Luz E. Marchan[2]; Oscar Ordaz[3]
- [1] Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz Heinrichstraße 36 8010 Graz, Austria.
- [2] Departamento de Matemáticas Decanato de Ciencias y Tecnologías Universidad Centroccidental Lisandro Alvarado Barquisimeto, Venezuela.
- [3] Departamento de Matemáticas y Centro ISYS Facultad de Ciencias Universidad Central de Venezuela Ap. 47567 Caracas 1041-A, Venezuela.
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 559-587
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- Sukumar das Adhikari and Purusottam Rath, Davenport constant with weights and some related questions. Integers 6 (2006), A30, 6 pp (electronic). Zbl1107.11018MR2264845
- Sukumar das Adhikari and Yong-Gao Chen, Davenport constant with weights and some related questions II. J. Combin. Theory Ser. A 115 (2008), no. 1, 178–184. Zbl1210.11031MR2378862
- N. Alon, A. Bialostocki and Y. Caro, The extremal cases in the Erdős-Ginzburg-Ziv Theorem. Unpublished.
- A. Bialostocki, P. Dierker, D. J. Grynkiewicz, and M. Lotspeich, On Some Developments of the Erdős-Ginzburg-Ziv Theorem II. Acta Arith. 110 (2003), no. 2, 173–184. Zbl1069.11007MR2008084
- Y. Caro, Zero-sum problems—a survey. Discrete Math. 152 (1996), no. 1–3, 93–113. Zbl0856.05068MR1388634
- P. Erdős, A. Ginzburg and A. Ziv, Theorem in Additive Number Theory. Bull. Res. Council Israel 10F (1961), 41–43. Zbl0063.00009
- W. Gao, Addition theorems for finite abelian groups. J. Number Theory 53 (1995), 241–246. Zbl0836.11007MR1348762
- W. Gao and A. Geroldinger, On Long Minimal Zero Sequences in Finite Abelian Groups. Periodica Math. Hungar. 38 (1999), no. 3, 179–211. Zbl0980.11014MR1756238
- W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey. Expositiones Mathematicae, 24 (2006), no. 4, 337–369. Zbl1122.11013MR2313123
- W. Gao and W. Jin, Weighted sums in finite cyclic groups. Discrete Math. 283 (2004), no. 1-3, 243–247. Zbl1052.11014MR2061498
- A. Geroldinger and F. Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton) 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. Zbl1113.11002MR2194494
- A. Geroldinger and R. Schneider, On Davenport’s Constant. J. Combin. Theory, Ser. A 61 (1992), no. 1, 147–152. Zbl0759.20008MR1178393
- S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units. To appear in Discrete math. Zbl1206.11032MR2459367
- D. J. Grynkiewicz, A Weighted Erdős-Ginzburg-Ziv Theorem. Combinatorica 26 (2006), no. 4, 445–453. Zbl1121.11018MR2260848
- D. J. Grynkiewicz, Quasi-periodic Decompositions and the Kemperman Structure Theorem, European J. Combin. 26 (2005), no. 5, 559–575. Zbl1116.11081MR2126639
- D. J. Grynkiewicz, On a Partition Analog of the Cauchy-Davenport Theorem. Acta Math. Hungar. 107 (2005), no. 1–2, 161–174. Zbl1102.11016MR2148942
- D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sum., Integers 5 (2005), no. 2, A7, 11 pp. (electronic). Zbl1098.11019MR2192085
- D. J. Grynkiewicz and R. Sabar, Monochromatic and zero-sum sets of nondecreasing modified diameter. Electron. J. Combin. 13 (2006), no. 1, Research Paper 28, 19 pp. (electronic). Zbl1084.05073MR2212501
- D. J. Grynkiewicz, Sumsets, Zero-sums and Extremal Combinatorics. Ph. D. Dissertation, Caltech (2005).
- D. J. Grynkiewicz, A Step Beyond Kemperman’s Stucture Theorem. Preprint (2007). Zbl1213.11179MR2573603
- Y. O. Hamidoune and A. Plagne, A new critical pair theorem applied to sum-free sets in abelian groups. Comment. Math. Helv. 79 (2004), no. 1, 183–207. Zbl1045.11072MR2031705
- Y. O. Hamidoune, On weighted sequence sums. Comb. Prob. Comput. 4 (1995), 363–367. Zbl0848.20049MR1377556
- Y. O. Hamidoune, On weighted sums in abelian groups. Discrete Math. 162 (1996), 127–132. Zbl0872.11016MR1425783
- T. Hungerford, Algebra. Springer-Verlag, New York, 1974. Zbl0293.12001MR600654
- J. H. B. Kemperman, On Small Sumsets in an Abelian Group. Acta Math. 103 (1960), 63–88. Zbl0108.25704MR110747
- M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z. 58 (1953), 459–484. Zbl0051.28104MR56632
- M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z. 64 (1955), 429–434. Zbl0064.04305MR68536
- S. Lang, Algebra. Third edition, Yale University, New Haven, CT, 1993.
- V. Lev, Critical pairs in abelian groups and Kemperman’s structure theorem. Int. J. Number Theory 2 (2006), no. 3, 379–396. Zbl1157.11040MR2264598
- M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996. Zbl0859.11003MR1477155
- J. E. Olson, An addition theorem for finite abelian groups. J. Number Theory 9 (1977), no. 1, 63–70. Zbl0351.20032MR437657
- O. Ordaz and D. Quiroz, Representation of group elements as subsequences sums. Discrete Mathematics 308 (2008), no. 15, 3315–3321. Zbl1143.20032MR2423413
- T. Tao and V. Vu, Additive Combinatorics. Cambridge Studies in Advanced Mathematics 105, Cambridge University Press, Cambridge, 2006. Zbl1127.11002MR2289012