Tolerance bounds for Weibull regression models

Mohamed M. T. Limam

Statistique et analyse des données (1991)

  • Volume: 16, Issue: 1, page 43-54
  • ISSN: 0750-7364

How to cite


Limam, Mohamed M. T.. "Tolerance bounds for Weibull regression models." Statistique et analyse des données 16.1 (1991): 43-54. <>.

author = {Limam, Mohamed M. T.},
journal = {Statistique et analyse des données},
language = {eng},
number = {1},
pages = {43-54},
publisher = {Association pour la statistique et ses illustrations},
title = {Tolerance bounds for Weibull regression models},
url = {},
volume = {16},
year = {1991},

AU - Limam, Mohamed M. T.
TI - Tolerance bounds for Weibull regression models
JO - Statistique et analyse des données
PY - 1991
PB - Association pour la statistique et ses illustrations
VL - 16
IS - 1
SP - 43
EP - 54
LA - eng
UR -
ER -


  1. Bain, L.J. and Engelhardt, M., (1981), Simple approximate distributional results for confidence and tolerance limits for the Weibull distribution based on maximum likelihood estimators, Technometrics, 23, pp. 15-19. Zbl0465.62023
  2. Bain, L.J. and Engelhardt, M., (1986), Approximate distributional results based on the maximum likelihood estimators for the Weibull distribution, Journal of Quality Technology, 18, pp. 174-181. Zbl0465.62023
  3. Harter, L.H., (1978), A bibliography of extreme value theory, International Statistical Review, 46, pp. 279-036. Zbl0398.62085MR518905
  4. International Mathematical and Statistical Libraries, Inc., (1987), IMSL library Reference Manual, Houston. 
  5. Johnson, N.L. and Kotz, S., (1970), Distributions in Statistics : Continuous Univariate Distributions - 1, Houghton Mifflin Co., Boston. Zbl0213.21101MR270475
  6. Jones, R.A., Scholz, F.W. Ossiander, M. and Shorack, G.R., (1985), Tolerance bounds for log gamma regression models, Technometrics, 27, pp. 109-118. Zbl0573.62093MR787594
  7. Lawless, J.F., (1982), Statistical Models and Methods for Lifetime Data, First Edition, John Wiley and Sons, Inc. Zbl1015.62093MR640866
  8. Lieberman, G. and Miller, R., (1963), Simultaneous tolerance intervals in regression, Biometrika, 50, pp. 155-168. Zbl0124.35501MR158472
  9. Limam, M.M.T. and Thomas, D.R., ( 1988a), Simultaneous tolerance intervals for the linear regression model, Journal of the American Statistical Association, 83,403, pp. 801-804. Zbl0649.62030MR963808
  10. Limam, M.M.T. and Thomas, D.R., ( 1988b), Simultaneous tolerance intervals in the random one-way model with covariates, Communications in Statistics, Simulation and Computation, 17, 3, pp. 1007-1019. Zbl0695.62180
  11. Miller, R.G. Jr, (1981), Simultaneous Statistical Inference, Second Edition, Springer-Verlag, New York. Zbl0463.62002MR612319
  12. Nelson, W.B., (1970), Statistical methods for accelerated lifetest data - the inverse power law model, General Electric Co. Technical Report 71-C-011, Schenectady, New York. 
  13. Statistical Analysis System, (1985), SAS/Stat Guide, SAS Institute Inc,. Box 8000, Cary, North Carolina. 
  14. Verhagen, A.M., (1961), The estimation of regression and error scale parameter when the joint distribution of the errors is of any continuous form and known apart from a scale parameter, Biometrika, 48, pp. 125-132. Zbl0209.50402MR138151
  15. Williams, J.S., (1962), A confidence interval for variance components, Biometrika, 49, pp. 278-281. Zbl0138.13101MR144424
  16. Wilson, A.L., (1967), An approach to simultaneous tolerance intervals in regression, Annals of Statistics, 30, pp. 939-959. Zbl0183.20902MR217954

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.