Canonical correlation analysis as a starting point for extensions of correspondence analysis

Renate Meyer

Statistique et analyse des données (1991)

  • Volume: 16, Issue: 1, page 55-77
  • ISSN: 0750-7364

How to cite

top

Meyer, Renate. "Canonical correlation analysis as a starting point for extensions of correspondence analysis." Statistique et analyse des données 16.1 (1991): 55-77. <http://eudml.org/doc/109005>.

@article{Meyer1991,
author = {Meyer, Renate},
journal = {Statistique et analyse des données},
language = {eng},
number = {1},
pages = {55-77},
publisher = {Association pour la statistique et ses illustrations},
title = {Canonical correlation analysis as a starting point for extensions of correspondence analysis},
url = {http://eudml.org/doc/109005},
volume = {16},
year = {1991},
}

TY - JOUR
AU - Meyer, Renate
TI - Canonical correlation analysis as a starting point for extensions of correspondence analysis
JO - Statistique et analyse des données
PY - 1991
PB - Association pour la statistique et ses illustrations
VL - 16
IS - 1
SP - 55
EP - 77
LA - eng
UR - http://eudml.org/doc/109005
ER -

References

top
  1. Bellman, R. (1960) Introduction to Matrix Analysis. McGraw-Hill Book Company, New York. Zbl0216.06101MR122820
  2. Benzécri, J.P. (1964) Cours de linguistique mathématique. Publications de l'Institut de Statistique de l'Université de Paris, 13. 
  3. Benzécri, J.P. (1977) Sur l'analyse des tableaux binaires associés à une correspondance multiple. Cahiers de l'Analyse des Données 2, 55-71. 
  4. Benzécri, J.P. (1980) Pratique de l'analyse des données. Dunod, Paris. Zbl0446.62001
  5. Bock, R.D. (1960) Methods and application of optimal scaling. The University of North Carolina, Psychometric Laboratory Research Memorandum 25. 
  6. Carroll, J.D. (1968) Generalization of Canonical Correlation Analysis to three or more sets of variables. Proc. 76th annual convention of the APA, 227-228. 
  7. Eckart, C., Young, G. (1936) The approximation of one matrix by another of lower rank. Psychometrika 1, 211-218. Zbl62.1075.02JFM62.1075.02
  8. Fisher, R.A. (1940) The precision of discriminant functions. Ann. Eugen. 10, 422- 429. Zbl0063.01384MR3543
  9. Gifi, A. (1990) Nonlinear Multivariate Analysis. Department of Data Theory, University of Leiden, The Netherlands. Zbl0697.62048MR1076188
  10. Greenacre, M.J. (1984) Theory and Applications of Correspondence Analysis. Academic Press, New York. Zbl0555.62005MR767260
  11. Greenacre, M.J. (1988) Correspondence analysis of multivariate categorical data by weighted least squares. Biometrika 75, 457-467. Zbl0651.62054MR967584
  12. Guttman, L. (1941) The quantification of a class of attributes : A theory and method of scale construction. In : The prediction of personal adjustment (Horst, P. ed.), 319-348. Social Science Research Council, New York. 
  13. Häussier, W.M. (1984) Computational Experience with an EV Algorithm for robust Lp -Discrimination. Comp. Stat. Quarterly 1, 233-244. Zbl0657.62072MR777204
  14. Hayashi, C. (1950) On the quantification of qualitative data from the mathematico-statistical point of view. Ann. Inst. Statist. Math. 2, 35-47. Zbl0041.26003MR39200
  15. Heuer, J. (1979) Selbstmord bei Kindern und Jugendlichen. Stuttgart, Ernst Klett Verlag. 
  16. Hill, M.O. (1974) Correspondence analysis : a neglected multivariate method. Appl. Satist. 23, 340-354. MR397998
  17. Hirschfeld, H.O. (1935) A connection between correlation and contingency. Cambridge Philosophical Soc. Proc. 31, 520-524. Zbl0012.36304JFM61.1304.01
  18. Horst, P. (1935) Measuring complex attitudes. J. Social Psychol. 6, 369-374. 
  19. Horst, P. (1961) Relations among m sets of measures. Psychometrika 26, 129-149. Zbl0099.35801MR132628
  20. Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417-441, 498-520. Zbl59.1182.04JFM59.1182.04
  21. Kettenring, J.R. (1971) Canonical Analysis of several sets of variables. Biometrika 58, 433-451. Zbl0225.62072MR341750
  22. Krafft, O. (1978) Lineare statistische Modelle und optimale Versuchpläne. Vandenhoeck & Ruprecht, Göttingen. Zbl0386.62048MR509339
  23. Lafosse, R. (1989) Proposal for a Generalized Canonical Analysis, In : R. Coppi, S. Bolasco (editors), Multiway Data Analysis. North Holland. MR1088958
  24. Lebart, L., Morineau, A., Warwich, K. (1979) Traitement des Données Statistiques. Dunod, Paris. Zbl0415.62002
  25. Lebart, L. Morineau, A., Fenelon, J.P. (1984) Multivariate Descriptive Statistical Analysis. New York : Wiley. Zbl0658.62069MR744990
  26. Leclerc, A. (1980) Quelques Propriétés optimales en analyse de données en terme de corrélation entre variables. Mathématiques et Sciences Humaines 18,51-67. Zbl0484.62002MR593435
  27. Lingoes, J.C. (1964) Simultaneous linear regression : an IBM 7090 program for analyzing metric/nonmetric or linear/nonlinear data. Behav. Res. 9, 61-94. 
  28. Masson, M. (1974) Processus linéaires et analyse des données non linéaires. Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris. 
  29. Masson, M. (1980) Méthodologies générales de traitement statistique de l'information de masse. Paris : Cedic-Fernand Nathan. Zbl0493.62054
  30. McKeon, J.J. (1966) Canonical analysis : some relations between canonical correlation, factor analysis, discriminant function analysis, and scaling theory. Psychometric monograph n° 13, Psychometric Society. 
  31. Nishisato, S. (1980) Analysis of Categorical Data : Dual Scalings and its Applications. University of Toronto Press, Toronto. Zbl0487.62001MR600656
  32. Rao, C.R., Mitra, S.K. (1971) Generalized inverse of matrices and its applications. Wiley, New York. Zbl0236.15004MR338013
  33. Richardson, M. Kuder, G.F. (1933) Making a rating scale that measures. Personnel J. 12, 36-40. 
  34. Van de Geer, J.P. (1986) Relations among k sets of variables with geometrical representation and application to categorical variables. In : Multidimensional Data Analysis (Leeuw, Heiser, Meulman, editors). DSWO Press, Leiden. 
  35. Van der Heijden, P.G.M. (1985) Correspondence analysis used complementary to loglinear analysis. Psychometrika 50, 429-447. Zbl0616.62082MR818933
  36. Van Rijckevorsel, J.L.A. (1987) The Application of Fuzzy Coding and Horseshoes in Multiple Correspondence Analysis. SSWO Press, Leiden. 
  37. Watson, G.A. (1985) On the Convergence of EV Algorithms for Robust lp-Discrimination. Comp. Stat. Quarterly 4, 307-314. Zbl0613.62081MR858433
  38. Yanai, H. (1986) Some Generalizations of Correspondence Analysis in Terms of Projection Operators. In : E. Diday et al. (editors), Data Analysis and Informatics IV. North Holland. Zbl0637.62059MR891907

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.