A quantitative primitive divisor result for points on elliptic curves
- [1] Department of Mathematics University of Toronto Toronto, Canada Current address: Department of Pure Mathematics University of Waterloo Waterloo, Canada
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 609-634
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIngram, Patrick. "A quantitative primitive divisor result for points on elliptic curves." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 609-634. <http://eudml.org/doc/10901>.
@article{Ingram2009,
abstract = {Let $E/K$ be an elliptic curve defined over a number field, and let $P\in E(K)$ be a point of infinite order. It is natural to ask how many integers $n\ge 1$ fail to occur as the order of $P$ modulo a prime of $K$. For $K=\mathbb\{Q\}$, $E$ a quadratic twist of $y^2=x^3-x$, and $P\in E(\mathbb\{Q\})$ as above, we show that there is at most one such $n\ge 3$.},
affiliation = {Department of Mathematics University of Toronto Toronto, Canada Current address: Department of Pure Mathematics University of Waterloo Waterloo, Canada},
author = {Ingram, Patrick},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {elliptic curve; point of infinite order; quadratic twist},
language = {eng},
number = {3},
pages = {609-634},
publisher = {Université Bordeaux 1},
title = {A quantitative primitive divisor result for points on elliptic curves},
url = {http://eudml.org/doc/10901},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Ingram, Patrick
TI - A quantitative primitive divisor result for points on elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 609
EP - 634
AB - Let $E/K$ be an elliptic curve defined over a number field, and let $P\in E(K)$ be a point of infinite order. It is natural to ask how many integers $n\ge 1$ fail to occur as the order of $P$ modulo a prime of $K$. For $K=\mathbb{Q}$, $E$ a quadratic twist of $y^2=x^3-x$, and $P\in E(\mathbb{Q})$ as above, we show that there is at most one such $n\ge 3$.
LA - eng
KW - elliptic curve; point of infinite order; quadratic twist
UR - http://eudml.org/doc/10901
ER -
References
top- A. S. Bang, Taltheoretiske Undersølgelser. Tidskrift f. Math. 5 (1886).
- Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), (with an appendix by M. Mignotte). Zbl0995.11010MR1863855
- A. Bremner, J. H. Silverman and N. Tzanakis, Integral points in arithmetic progression on . J. Number Theory, 80 (2000). Zbl1009.11035MR1740510
- Y. Bugeaud, P. Corvaja, and U. Zannier,An upper bound for the G.C.D. of and . Mathematische Zeitschrift 243 (2003). Zbl1021.11001MR1953049
- R. D. Carmichael,On the numerical factors of the arithmetic forms . Annals of Math. 2nd series, 15 (1914), 30–48 and 49–70. Zbl44.0216.01
- G. Cornelissen and K. Zahidi, Elliptic divisibility sequences and undecidable problems about rational points. J. Reine Angew. Math. 613 (2007). Zbl1178.11076MR2377127
- S. David, Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France No. 62 (1995). Zbl0859.11048MR1385175
- G. Everest, G. McLaren, and T. Ward, Primitive divisors of elliptic divisibility sequences. J. Number Theory 118 (2006). Zbl1093.11038MR2220263
- P. Ingram, Elliptic divisibility sequences over certain curves. J. Number Theory 123 (2007). Zbl1170.11010MR2301226
- P. Ingram, Multiples of integral points on elliptic curves. J. Number Theory, to appear (arXiv:0802.2651v1) Zbl1233.11062MR2468477
- P. Ingram and J. H. Silverman, Uniform bounds for primitive divisors in elliptic divisibility sequences. (preprint)
- K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory. Volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998. Zbl0712.11001MR1070716
- PARI/GP, version 2.3.0, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.
- B. Poonen, Characterizing integers among rational numbers with a universal-existential formula. (arXiv:math/0703907) Zbl1179.11047MR2530851
- K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955). Zbl0066.29302MR72182
- A. Schinzel, Primitive divisors of the expression in algebraic number fields. J. Reine Angew. Math. 268/269 (1974). Zbl0287.12014MR344221
- R. Shipsey, Elliptic divisibility sequences. Ph.D. thesis, Goldsmiths, University of London, 2001.
- J. H. Silverman, The arithmetic of elliptic curves. Volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- J. H. Silverman, Wieferich’s criterion and the -conjecture. J. Number Theory 30 (1988). Zbl0654.10019MR961918
- J. H. Silverman, Advanced topics in the arithmetic of elliptic curves. Volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
- J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups. Monatshefte für Mathematik 145 (2005). Zbl1197.11070MR2162351
- C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers. In Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press, London, 1977. Zbl0366.12002MR476628
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arithmetica 67 (1994). Zbl0805.11026MR1291875
- P. Vojta, Diophantine approximations and value distribution theory. Volume 1239 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987 Zbl0609.14011MR883451
- M. Ward, Memoir on elliptic divisibility sequences. Amer. J. Math. 70 (1948). Zbl0035.03702MR23275
- K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.