Hyperbolic lattice-point counting and modular symbols

Yiannis N. Petridis[1]; Morten S. Risager[2]

  • [1] Department of Mathematics University College London Gower Street London WC1E 6BT The Graduate Center Mathematics Ph.D. Program 365 Fifth Avenue Room 4208 New York, NY 10016-4309
  • [2] Department of Mathematical Sciences University of Aarhus Ny Munkegade Building 530 8000 Aarhus, Denmark Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø, Denmark

Journal de Théorie des Nombres de Bordeaux (2009)

  • Volume: 21, Issue: 3, page 721-734
  • ISSN: 1246-7405

Abstract

top
For a cocompact group Γ of SL 2 ( ) we fix a real non-zero harmonic 1 -form α . We study the asymptotics of the hyperbolic lattice-counting problem for Γ under restrictions imposed by the modular symbols γ , α . We prove that the normalized values of the modular symbols, when ordered according to this counting, have a Gaussian distribution.

How to cite

top

Petridis, Yiannis N., and Risager, Morten S.. "Hyperbolic lattice-point counting and modular symbols." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 721-734. <http://eudml.org/doc/10908>.

@article{Petridis2009,
abstract = {For a cocompact group $\{\Gamma \}$ of $\{\hbox\{SL\}_2( \{\mathbb\{R\}\})\} $ we fix a real non-zero harmonic $1$-form $\alpha $. We study the asymptotics of the hyperbolic lattice-counting problem for $\{\Gamma \}$ under restrictions imposed by the modular symbols $\left\langle \gamma ,\{\alpha \} \right\rangle $. We prove that the normalized values of the modular symbols, when ordered according to this counting, have a Gaussian distribution.},
affiliation = {Department of Mathematics University College London Gower Street London WC1E 6BT The Graduate Center Mathematics Ph.D. Program 365 Fifth Avenue Room 4208 New York, NY 10016-4309; Department of Mathematical Sciences University of Aarhus Ny Munkegade Building 530 8000 Aarhus, Denmark Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø, Denmark},
author = {Petridis, Yiannis N., Risager, Morten S.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {lattice points; modular symbols; trace formula; hyperbolic surface; Gaussian distribution},
language = {eng},
number = {3},
pages = {721-734},
publisher = {Université Bordeaux 1},
title = {Hyperbolic lattice-point counting and modular symbols},
url = {http://eudml.org/doc/10908},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Petridis, Yiannis N.
AU - Risager, Morten S.
TI - Hyperbolic lattice-point counting and modular symbols
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 721
EP - 734
AB - For a cocompact group ${\Gamma }$ of ${\hbox{SL}_2( {\mathbb{R}})} $ we fix a real non-zero harmonic $1$-form $\alpha $. We study the asymptotics of the hyperbolic lattice-counting problem for ${\Gamma }$ under restrictions imposed by the modular symbols $\left\langle \gamma ,{\alpha } \right\rangle $. We prove that the normalized values of the modular symbols, when ordered according to this counting, have a Gaussian distribution.
LA - eng
KW - lattice points; modular symbols; trace formula; hyperbolic surface; Gaussian distribution
UR - http://eudml.org/doc/10908
ER -

References

top
  1. J. Bourgain, A. Gamburd, P. Sarnak, Sieving and expanders. C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159. Zbl1217.11081MR2246331
  2. F. Chamizo, Some applications of large sieve in Riemann surfaces. Acta Arith. 77 (1996), no. 4, 315–337. Zbl0863.11062MR1414513
  3. J. Delsarte, Sur le gitter fuchsien. C. R. Acad. Sci. Paris 214 (1942), 147–179. Zbl68.0079.03MR7769
  4. D. Goldfeld, Zeta functions formed with modular symbols. Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 111–121, Proc. Sympos. Pure Math., 66, Part 1, Ager. Math. Soc., Providence, RI, 1999. Zbl0934.11026MR1703748
  5. D. Goldfeld, The distribution of modular symbols. Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), 849–865, de Gruyter, Berlin, 1999. Zbl0948.11022MR1689548
  6. A. Good, Local analysis of Selberg’s trace formula. Lecture Notes in Mathematics, 1040. Springer-Verlag, Berlin, 1983. i+128 pp. Zbl0525.10013MR727476
  7. D. Goldfeld, C. O’Sullivan, Estimating Additive Character Sums for Fuchsian Groups. The Ramanujan Journal 7 (1) (2003), 241–267. Zbl1047.11049MR2035805
  8. H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen I. Math. Ann. 138 (1959), 1–26; II. Math. Ann. 142 (1960/1961), 385–398; Nachtrag zu II, Math. Ann. 143 (1961), 463—464. Zbl0101.05702MR109212
  9. H. Iwaniec, Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp. Zbl1006.11024MR1942691
  10. A. Kontorovich, Ph.D thesis, Columbia University, 2007. 
  11. P. Lax, R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. J. Funct. Anal. 46 (1982) 280–350. Zbl0497.30036MR661875
  12. M. Loève, Probability theory I. Fourth edition, Springer, New York, 1977. Zbl0359.60001MR651017
  13. S. J. Patterson, A lattice-point problem in hyperbolic space. Mathematika 22 (1975), no. 1, 81–88. Zbl0308.10013MR422160
  14. Y. N. Petridis, M. S. Risager, Modular symbols have a normal distribution. Geom. Funct. Anal. 14 (2004), no. 5, 1013–1043. Zbl1142.11332MR2105951
  15. Y. N. Petridis, M. S. Risager, The distribution of values of the Poincaré pairing for hyperbolic Riemann surfaces. J. Reine Angew. Math., 579 (2005), 159–173. Zbl1062.11030MR2124022
  16. R. Phillips, Z. Rudnick, The circle problem in the hyperbolic plane. J. Funct. Anal. 121 (1994), no. 1, 78–116. Zbl0812.11035MR1270589
  17. R. Phillips, P. Sarnak, The spectrum of Fermat curves. Geom. Funct. Anal. 1 (1991), no. 1, 80–146. Zbl0751.11030MR1091611
  18. M. S. Risager, Distribution of modular symbols for compact surfaces. Internat. Math. Res. Notices. 2004, no. 41, 2125–2146. Zbl1142.11333MR2078851

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.