Hyperbolic lattice-point counting and modular symbols
Yiannis N. Petridis[1]; Morten S. Risager[2]
- [1] Department of Mathematics University College London Gower Street London WC1E 6BT The Graduate Center Mathematics Ph.D. Program 365 Fifth Avenue Room 4208 New York, NY 10016-4309
- [2] Department of Mathematical Sciences University of Aarhus Ny Munkegade Building 530 8000 Aarhus, Denmark Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø, Denmark
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 721-734
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPetridis, Yiannis N., and Risager, Morten S.. "Hyperbolic lattice-point counting and modular symbols." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 721-734. <http://eudml.org/doc/10908>.
@article{Petridis2009,
abstract = {For a cocompact group $\{\Gamma \}$ of $\{\hbox\{SL\}_2( \{\mathbb\{R\}\})\} $ we fix a real non-zero harmonic $1$-form $\alpha $. We study the asymptotics of the hyperbolic lattice-counting problem for $\{\Gamma \}$ under restrictions imposed by the modular symbols $\left\langle \gamma ,\{\alpha \} \right\rangle $. We prove that the normalized values of the modular symbols, when ordered according to this counting, have a Gaussian distribution.},
affiliation = {Department of Mathematics University College London Gower Street London WC1E 6BT The Graduate Center Mathematics Ph.D. Program 365 Fifth Avenue Room 4208 New York, NY 10016-4309; Department of Mathematical Sciences University of Aarhus Ny Munkegade Building 530 8000 Aarhus, Denmark Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø, Denmark},
author = {Petridis, Yiannis N., Risager, Morten S.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {lattice points; modular symbols; trace formula; hyperbolic surface; Gaussian distribution},
language = {eng},
number = {3},
pages = {721-734},
publisher = {Université Bordeaux 1},
title = {Hyperbolic lattice-point counting and modular symbols},
url = {http://eudml.org/doc/10908},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Petridis, Yiannis N.
AU - Risager, Morten S.
TI - Hyperbolic lattice-point counting and modular symbols
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 721
EP - 734
AB - For a cocompact group ${\Gamma }$ of ${\hbox{SL}_2( {\mathbb{R}})} $ we fix a real non-zero harmonic $1$-form $\alpha $. We study the asymptotics of the hyperbolic lattice-counting problem for ${\Gamma }$ under restrictions imposed by the modular symbols $\left\langle \gamma ,{\alpha } \right\rangle $. We prove that the normalized values of the modular symbols, when ordered according to this counting, have a Gaussian distribution.
LA - eng
KW - lattice points; modular symbols; trace formula; hyperbolic surface; Gaussian distribution
UR - http://eudml.org/doc/10908
ER -
References
top- J. Bourgain, A. Gamburd, P. Sarnak, Sieving and expanders. C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159. Zbl1217.11081MR2246331
- F. Chamizo, Some applications of large sieve in Riemann surfaces. Acta Arith. 77 (1996), no. 4, 315–337. Zbl0863.11062MR1414513
- J. Delsarte, Sur le gitter fuchsien. C. R. Acad. Sci. Paris 214 (1942), 147–179. Zbl68.0079.03MR7769
- D. Goldfeld, Zeta functions formed with modular symbols. Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 111–121, Proc. Sympos. Pure Math., 66, Part 1, Ager. Math. Soc., Providence, RI, 1999. Zbl0934.11026MR1703748
- D. Goldfeld, The distribution of modular symbols. Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), 849–865, de Gruyter, Berlin, 1999. Zbl0948.11022MR1689548
- A. Good, Local analysis of Selberg’s trace formula. Lecture Notes in Mathematics, 1040. Springer-Verlag, Berlin, 1983. i+128 pp. Zbl0525.10013MR727476
- D. Goldfeld, C. O’Sullivan, Estimating Additive Character Sums for Fuchsian Groups. The Ramanujan Journal 7 (1) (2003), 241–267. Zbl1047.11049MR2035805
- H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen I. Math. Ann. 138 (1959), 1–26; II. Math. Ann. 142 (1960/1961), 385–398; Nachtrag zu II, Math. Ann. 143 (1961), 463—464. Zbl0101.05702MR109212
- H. Iwaniec, Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp. Zbl1006.11024MR1942691
- A. Kontorovich, Ph.D thesis, Columbia University, 2007.
- P. Lax, R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. J. Funct. Anal. 46 (1982) 280–350. Zbl0497.30036MR661875
- M. Loève, Probability theory I. Fourth edition, Springer, New York, 1977. Zbl0359.60001MR651017
- S. J. Patterson, A lattice-point problem in hyperbolic space. Mathematika 22 (1975), no. 1, 81–88. Zbl0308.10013MR422160
- Y. N. Petridis, M. S. Risager, Modular symbols have a normal distribution. Geom. Funct. Anal. 14 (2004), no. 5, 1013–1043. Zbl1142.11332MR2105951
- Y. N. Petridis, M. S. Risager, The distribution of values of the Poincaré pairing for hyperbolic Riemann surfaces. J. Reine Angew. Math., 579 (2005), 159–173. Zbl1062.11030MR2124022
- R. Phillips, Z. Rudnick, The circle problem in the hyperbolic plane. J. Funct. Anal. 121 (1994), no. 1, 78–116. Zbl0812.11035MR1270589
- R. Phillips, P. Sarnak, The spectrum of Fermat curves. Geom. Funct. Anal. 1 (1991), no. 1, 80–146. Zbl0751.11030MR1091611
- M. S. Risager, Distribution of modular symbols for compact surfaces. Internat. Math. Res. Notices. 2004, no. 41, 2125–2146. Zbl1142.11333MR2078851
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.