Absolute norms of -primary units
- [1] Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad -211019, India.
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 3, page 735-742
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPisolkar, Supriya. "Absolute norms of $p$-primary units." Journal de Théorie des Nombres de Bordeaux 21.3 (2009): 735-742. <http://eudml.org/doc/10909>.
@article{Pisolkar2009,
abstract = {We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about $2$-primary units. We also prove a similar statement about the absolute norms of $p$-primary units, for all primes $p$.},
affiliation = {Harish-Chandra Research Institute Chhatnag Road, Jhunsi Allahabad -211019, India.},
author = {Pisolkar, Supriya},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {p-primary units; Hasse-Herbrand functions},
language = {eng},
number = {3},
pages = {735-742},
publisher = {Université Bordeaux 1},
title = {Absolute norms of $p$-primary units},
url = {http://eudml.org/doc/10909},
volume = {21},
year = {2009},
}
TY - JOUR
AU - Pisolkar, Supriya
TI - Absolute norms of $p$-primary units
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 3
SP - 735
EP - 742
AB - We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about $2$-primary units. We also prove a similar statement about the absolute norms of $p$-primary units, for all primes $p$.
LA - eng
KW - p-primary units; Hasse-Herbrand functions
UR - http://eudml.org/doc/10909
ER -
References
top- Dalawat C.S., Local discriminants, kummerian extensions, and abelian curves. ArXiv:0711.3878. Zbl1226.11118
- Fesenko, I. B., Vostokov, S. V., Local fields and their extensions. Second edition. Translations of Mathematical Monographs 121, AMS Providence, RI, 2001. Zbl1156.11046MR1218392
- Hasse H., Number theory. Classics in Mathematics. Springer-Verlag, Berlin, 2002. Zbl0991.11001MR1885791
- Martinet, J., Les discriminants quadratiques et la congruence de Stickelberger. Sém. Théor. Nombres Bordeaux (2) 1 (1989), no. 1, 197–204. Zbl0731.11061MR1050275
- Neukirch, J., Class field theory. Grund. der Math. Wiss. 280. Springer-Verlag, Berlin, 1986. Zbl0587.12001MR819231
- Jean-Pierre Serre, Local Fields. GTM 67, Springer-Verlag, 1979. Zbl0423.12016MR554237
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.