The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974)
- page 1-15
Access Full Article
topHow to cite
topOvsepian, R. I., and Pełczyński, A.. "The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974): 1-15. <http://eudml.org/doc/109104>.
@article{Ovsepian1973-1974,
author = {Ovsepian, R. I., Pełczyński, A.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$},
url = {http://eudml.org/doc/109104},
year = {1973-1974},
}
TY - JOUR
AU - Ovsepian, R. I.
AU - Pełczyński, A.
TI - The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1973-1974
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/109104
ER -
References
top- [1] S. Banach: Théorie des opérations linéaires, Monografie Mat., Warszawa1932. Zbl0005.20901JFM58.0420.01
- [2] S. Banach und S. Mazur: Zur Theorie der linearen Dimension, Studia Math.4 (1933), 100 - 112. Zbl0008.31701
- [3] M.M. Day: On the basis problem in normed linear spaces, Proc. Amer. Math. Soc.13 (1962), 655- 658. Zbl0109.33601MR137987
- [4] W.J. Davis and W.B. Johnson: On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math.45 (1973), 173-179. Zbl0256.46026MR331021
- [5] L. Dor: On sequences spanning a complex l1 space, to appear. Zbl0296.46014
- [6] V.F. Gaposhkin: Lacunar series and independent functions, Usp. Mat. Nauk, 21 (132) (1966), 3 - 82 (Russian). Zbl0178.06903MR206556
- [7] A. Grothendieck: Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paulo8 (1956), 1 - 79. Zbl0074.32303MR94682
- [8] J. Lindenstrauss and A. Pełczyński: Absolutely summing operators in Lp spaces and their applications, Studia Math.29 (1968), 275-326. Zbl0183.40501
- [9] A.M. Olevski: Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR, Ser. Mat.30 (1966), 387-432 (Russian). Zbl0161.25902MR196394
- [10] A. Pełczyński: A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math.21 (1962), 371 -374. Zbl0114.30904MR146636
- [11] A. Persson und A. Pietsch: p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math.33 (1969), 19-62. Zbl0189.43602MR243323
- [12] A. Pietsch: Absolutely p-summierende Abbildungen in normirten Räumen, Studia Math, 28 (1967), 333 - 353. Zbl0156.37903MR216328
- [13] H.P. Rosenthal: A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci. USA to appear. Zbl0297.46013
- [14] H.S. Shapiro: Incomplete orthogonal families and related question on orthogonal matrices, Michigan J. Math.11 (1964), 15 - 18. Zbl0122.06301MR159180
- [15] S. Sidon: Über orthogonalen Entwicklungen, Acta Math. Szeged10 (1943), 206 -253. Zbl0060.17003MR17415
- [16] L. Weiss: On strictly singular and strictly cosingular operators in preparation.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.