The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L 2

R. I. Ovsepian; A. Pełczyński

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974)

  • page 1-15

How to cite

top

Ovsepian, R. I., and Pełczyński, A.. "The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1973-1974): 1-15. <http://eudml.org/doc/109104>.

@article{Ovsepian1973-1974,
author = {Ovsepian, R. I., Pełczyński, A.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
language = {eng},
pages = {1-15},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$},
url = {http://eudml.org/doc/109104},
year = {1973-1974},
}

TY - JOUR
AU - Ovsepian, R. I.
AU - Pełczyński, A.
TI - The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1973-1974
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/109104
ER -

References

top
  1. [1] S. Banach: Théorie des opérations linéaires, Monografie Mat., Warszawa1932. Zbl0005.20901JFM58.0420.01
  2. [2] S. Banach und S. Mazur: Zur Theorie der linearen Dimension, Studia Math.4 (1933), 100 - 112. Zbl0008.31701
  3. [3] M.M. Day: On the basis problem in normed linear spaces, Proc. Amer. Math. Soc.13 (1962), 655- 658. Zbl0109.33601MR137987
  4. [4] W.J. Davis and W.B. Johnson: On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math.45 (1973), 173-179. Zbl0256.46026MR331021
  5. [5] L. Dor: On sequences spanning a complex l1 space, to appear. Zbl0296.46014
  6. [6] V.F. Gaposhkin: Lacunar series and independent functions, Usp. Mat. Nauk, 21 (132) (1966), 3 - 82 (Russian). Zbl0178.06903MR206556
  7. [7] A. Grothendieck: Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paulo8 (1956), 1 - 79. Zbl0074.32303MR94682
  8. [8] J. Lindenstrauss and A. Pełczyński: Absolutely summing operators in Lp spaces and their applications, Studia Math.29 (1968), 275-326. Zbl0183.40501
  9. [9] A.M. Olevski: Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR, Ser. Mat.30 (1966), 387-432 (Russian). Zbl0161.25902MR196394
  10. [10] A. Pełczyński: A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math.21 (1962), 371 -374. Zbl0114.30904MR146636
  11. [11] A. Persson und A. Pietsch: p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math.33 (1969), 19-62. Zbl0189.43602MR243323
  12. [12] A. Pietsch: Absolutely p-summierende Abbildungen in normirten Räumen, Studia Math, 28 (1967), 333 - 353. Zbl0156.37903MR216328
  13. [13] H.P. Rosenthal: A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci. USA to appear. Zbl0297.46013
  14. [14] H.S. Shapiro: Incomplete orthogonal families and related question on orthogonal matrices, Michigan J. Math.11 (1964), 15 - 18. Zbl0122.06301MR159180
  15. [15] S. Sidon: Über orthogonalen Entwicklungen, Acta Math. Szeged10 (1943), 206 -253. Zbl0060.17003MR17415
  16. [16] L. Weiss: On strictly singular and strictly cosingular operators in preparation. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.