Weak solutions of incompressible Euler equations with decreasing energy

Alexander I. Shnirelman[1]

  • [1] School of Mathematical Sciences, Tel-Aviv University, and IHES

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 326, Issue: 3, page 1-9

How to cite

top

Shnirelman, Alexander I.. "Weak solutions of incompressible Euler equations with decreasing energy." Séminaire Équations aux dérivées partielles 326.3 (1996-1997): 1-9. <http://eudml.org/doc/10920>.

@article{Shnirelman1996-1997,
affiliation = {School of Mathematical Sciences, Tel-Aviv University, and IHES},
author = {Shnirelman, Alexander I.},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {weak solution of incompressible Euler equations; turbulent fluid motion at high Reynolds numbers; generalized flows},
language = {eng},
number = {3},
pages = {1-9},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Weak solutions of incompressible Euler equations with decreasing energy},
url = {http://eudml.org/doc/10920},
volume = {326},
year = {1996-1997},
}

TY - JOUR
AU - Shnirelman, Alexander I.
TI - Weak solutions of incompressible Euler equations with decreasing energy
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 326
IS - 3
SP - 1
EP - 9
LA - eng
KW - weak solution of incompressible Euler equations; turbulent fluid motion at high Reynolds numbers; generalized flows
UR - http://eudml.org/doc/10920
ER -

References

top
  1. Y. Brenier, The Least Action Principle and the related concept of generalized flows for incompressible perfect fluids. J. Amer. Math Soc., 2:2 (1989). Zbl0697.76030MR969419
  2. Y. Brenier, A dual Least Action Principle for the motion of an ideal incompressible fluid. Arch. Rat. Mech. Anal., v.122 (1993), no. 4, 323-351. Zbl0797.76006MR1217592
  3. P. Constantin, W. E, E. Titi, Onsager’s conjecture on the energy conservation for the solutions of the Euler equations. Comm. Math. Phys., v.165 (1994), 207-209. Zbl0818.35085
  4. G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D, v. 78 (1994), no. 3-4, 222-240. Zbl0817.76011MR1302409
  5. L. Onsager, Statistical hydromechanics. Nuovo Cimento (Supplemento), v.6 (1949), 279. MR36116
  6. V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal., v.3 (1993), no. 4, 343-401. Zbl0836.76017MR1231007
  7. A. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Math. USSR Sbornik, v. 56 (1987), no. 1, 79-105. Zbl0725.58005
  8. A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. And Funct. Anal., v.4 (1994), no. 5, 586-620. Zbl0851.76003MR1296569
  9. A.Shnirelman, On the non-uniqueness of weak solution of the Euler equations. Preprint IHES, 1996. See also Journees “Equations aux Derivees Partielles” (Saint-Jean-de-Monts, 1996), Exp. No. XVIII, Ecole Polytechnic, Palaiseau, 1996. Zbl0881.35096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.