A disjointness property of l p n sequences in L p

G. Schechtman

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)

  • page 1-13

How to cite


Schechtman, G.. "A disjointness property of $l^n_p$ sequences in $L_p$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-13. <http://eudml.org/doc/109203>.

author = {Schechtman, G.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Lp space; complemented subspaces; almost isometric},
language = {eng},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {A disjointness property of $l^n_p$ sequences in $L_p$},
url = {http://eudml.org/doc/109203},
year = {1978-1979},

AU - Schechtman, G.
TI - A disjointness property of $l^n_p$ sequences in $L_p$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - eng
KW - Lp space; complemented subspaces; almost isometric
UR - http://eudml.org/doc/109203
ER -


  1. (1) L.E. Dor, On projections in L1, Ann of Math.102 (1975), 463 -474. Zbl0314.46027MR420244
  2. (2) P. Enflo and H.P. Rosenthal, Some results concerning Lp(μ) spaces, J. Funct. Anal.14(1973), 325-348. Zbl0265.46032
  3. (3) G. Schechtman, Almost isometric Lp subspaces of Lp(0,1), to appear in the J. of the London Math. Soc. Zbl0415.46029

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.