A disjointness property of sequences in
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)
- page 1-13
Access Full Article
topHow to cite
topSchechtman, G.. "A disjointness property of $l^n_p$ sequences in $L_p$." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-13. <http://eudml.org/doc/109203>.
@article{Schechtman1978-1979,
author = {Schechtman, G.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {Lp space; complemented subspaces; almost isometric},
language = {eng},
pages = {1-13},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {A disjointness property of $l^n_p$ sequences in $L_p$},
url = {http://eudml.org/doc/109203},
year = {1978-1979},
}
TY - JOUR
AU - Schechtman, G.
TI - A disjointness property of $l^n_p$ sequences in $L_p$
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 13
LA - eng
KW - Lp space; complemented subspaces; almost isometric
UR - http://eudml.org/doc/109203
ER -
References
top- (1) L.E. Dor, On projections in L1, Ann of Math.102 (1975), 463 -474. Zbl0314.46027MR420244
- (2) P. Enflo and H.P. Rosenthal, Some results concerning Lp(μ) spaces, J. Funct. Anal.14(1973), 325-348. Zbl0265.46032
- (3) G. Schechtman, Almost isometric Lp subspaces of Lp(0,1), to appear in the J. of the London Math. Soc. Zbl0415.46029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.