An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space

M. Bożejko; A. Pełczyński

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979)

  • page 1-9

How to cite

top

Bożejko, M., and Pełczyński, A.. "An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979): 1-9. <http://eudml.org/doc/109219>.

@article{Bożejko1978-1979,
author = {Bożejko, M., Pełczyński, A.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {translation invariant operator; translation invariant Banach space; invariant uniform approximation property},
language = {eng},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space},
url = {http://eudml.org/doc/109219},
year = {1978-1979},
}

TY - JOUR
AU - Bożejko, M.
AU - Pełczyński, A.
TI - An analogue in commutative harmonic analysis of the uniform bounded approximation property of Banach space
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1978-1979
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - eng
KW - translation invariant operator; translation invariant Banach space; invariant uniform approximation property
UR - http://eudml.org/doc/109219
ER -

References

top
  1. [1] Amemiya I. and Ito T., A simple proof of the theorem of P.J. Cohen, Bull. Amer. Math. Soc.70 (1964), 774-776. Zbl0126.31902MR167590
  2. [2] E. Flner, Math..Scand.3 (1955), 243-254. Zbl0067.01203MR79220
  3. [3] S. Heinrich, Finite representability and super-ideals of operators, Dissertationes Math. Zbl0443.47042
  4. [4] J. Lindenstrauss and L. Tzafriri,The uniform approximation property in Orlicz spaces, Israel J. Math.23 (1976), 142-155. Zbl0347.46025MR399806
  5. [5] A. Peczynski and H.P. Rosenthal, Localization techniques in L p spaces, Studia Math.52 (1975), 263-289. Zbl0297.46023MR361729

NotesEmbed ?

top

You must be logged in to post comments.