Semi-groupes holomorphes et K -convexité

G. Pisier

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1980-1981)

  • page 1-30

How to cite


Pisier, G.. "Semi-groupes holomorphes et $K$-convexité." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1980-1981): 1-30. <>.

author = {Pisier, G.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {K-convex Banach spaces; Beurling-Kato criterion for holomorphic semi- groups; cotype; bounded approximation property},
language = {fre},
pages = {1-30},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Semi-groupes holomorphes et $K$-convexité},
url = {},
year = {1980-1981},

AU - Pisier, G.
TI - Semi-groupes holomorphes et $K$-convexité
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1980-1981
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 30
LA - fre
KW - K-convex Banach spaces; Beurling-Kato criterion for holomorphic semi- groups; cotype; bounded approximation property
UR -
ER -


  1. [1] J. Arazy: On the geometry of the unit ball of unitary matrix spaces. Integral equations and operator theory. A paraître. Zbl0459.47029MR606129
  2. [2] W. Beckner: Inequalities in Fourier analysis, Annals of Maths.102 (1975) 159-182. Zbl0338.42017MR385456
  3. [3] S. Bellenot: Uniformly complemented lnp's in quasi-reflexive Banach spaces, Israel J. Math., à paraître. Zbl0469.46011
  4. [4] Y. Benyamini et Y. Gordon: Random factorizations of operators between Banach spaces, J. d'Analyse Math. de Jerusalem, à paraître. Zbl0474.47010
  5. [5] A. Beurling: On analytic extension of semi-groups of operators, Journal of Functional Analysis6 (1970) 387-400. Zbl0203.13901MR282248
  6. [6] P. Butzer, H. Berens: Semi-groups of operators and approximation, Springer Verlag, Berlin- Heidelberg- New York1967. Zbl0164.43702MR230022
  7. [7] T. Figiel: On a recent result of G. Pisier, Longhorn Notes, University of Texas at Austin, 1980/81. MR832214
  8. [8] T. Figiel, J. Lindenstrauss et V. Milman: The dimension of almost spherical sections of convex bodies. Zbl0375.52002
  9. [9] N. Tomczak-Jaegermann: Projections onto hilbertian subspaces of Banach spaces, Israel J. Math.33 (1979) 155-171. Zbl0427.46010MR571251
  10. [10] D.P. Giesy: On a convexity condition in normed linear spaces, Trans. A.M.S.125 (1966) 114-146. Zbl0183.13204MR205031
  11. [11] E. Hille, R. Phillips: Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publ.31 (1957) 473-478. Zbl0078.10004MR89373
  12. [12] R.C. James: Some self-dual properties of normed linear spaces, Annals of Math. Studies69 (1972) 159-176. Zbl0233.46025MR454600
  13. [13] W.B. Johnson et L. Tzafriri: On the local structure of subspaces of Banach lattices, Israel J. Math.20 (1975) 292-299. Zbl0311.46003MR420210
  14. [14] T. Kato: Perturbation theory for linear operators, Springer Verlag, Berlin- Heidelberg- New York1966. Zbl0148.12601MR203473
  15. [15] T. Kato: A characterization of holomorphic semi-groups, Proc. A.M.S.25 (1970) 495-498. Zbl0199.45604MR264456
  16. [16] J.L. Krivine: Sous-espaces de dimension finie des espaces de Banach réticulés, Annals of Maths.104 (1976) 1-29. Zbl0329.46008MR407568
  17. [17] S. Kwapień: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math.44 (1972) 583-595. Zbl0256.46024MR341039
  18. [18] S. Kwapień: A theorem on the Rademacher series with vector valued coefficients, Probability in Banach spaces, Springer Lect. Notes in Math. No 526 (1976) 157-158. Zbl0337.60004MR451333
  19. [19] J. Lopez et K. Ross: Sidon sets, Lecture Notes in Pure and Applied Maths. No 13, Marcel Dekker, New York1975. Zbl0351.43008MR440298
  20. [20] M.B. Marcus et G. Pisier: Random Fourier series with applications to harmonie analysis, Annals of Math. Studies, Princeton University Press, à paraître. Zbl0474.43004MR630532
  21. [21] B. Maurey et G. Pisier: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math.58 (1976) 45-90. Zbl0344.47014MR443015
  22. [22] Pei-Kee-Lin: Some problems in the geometry of Banach spaces, Ph.D. Thesis, Ohio State Univ. (ch. 13: The p-convexity and q-concavity of unitary matrix spaces) 1980. Zbl0451.46009
  23. [23] G. Pisier: Some applications of the complex interpolation method to Banach lattices, Journal d'Analyse de Jerusalem35 (1979) 264-281. Zbl0427.46048MR555306
  24. [24] G. Pisier: Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un Hilbert, Annales de l'E.N.S.13 (1980) 23-43. Zbl0436.47013MR584081
  25. [25] G. Pisier: Holomorphic semi-groups and the geometry of Banach spaces, à paraître. Zbl0487.46008
  26. [26] M. Reed et B. Simon: Methods of modern mathematical physics, II, Fourier analysis, self-adjointness, academic Press, New-York, 1975. Zbl0308.47002MR493420
  27. [27] Séminaire Maurey-Schwartz 1972-73, Ecole Polytechnique, Paris. 
  28. [28] Séminaire sur la géométrie des espaces de Banach 1977-78, Ecole Polytechnique, Palaiseau. Zbl0377.00009
  29. [29] Séminaire d'analyse fonctionnelle 1978-79, Ecole Polytechnique, Palaiseau. Zbl0401.00011
  30. [30] Séminaire d'analyse fonctionnelle 1979-80, Ecole Polytechnique, Palaiseau. 
  31. [31] E.M. Stein: Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Math. Studies No 63, Princeton University Press, 1970. Zbl0193.10502MR252961
  32. [32] L. Tzafriri: On Banach spaces with unconditional basis, Israel J. Math.17 (1974) 84-93. Zbl0281.46013MR348456
  33. [33] E.B. Davies: One parameter semi-groups, London Math. Soc. Monographs No 15, Academic Press, London, 1980. Zbl0457.47030MR591851

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.