Strong unique continuation for second order elliptic differential operators

Rachid Regbaoui[1]

  • [1] Faculté des Sciences, Département de Mathématiques, Université de Bretagne Occidentale, Avenue Le Gorgeu, BP 809, F- 29285 BREST

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-15

How to cite

top

Regbaoui, Rachid. "Strong unique continuation for second order elliptic differential operators." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-15. <http://eudml.org/doc/10930>.

@article{Regbaoui1996-1997,
affiliation = {Faculté des Sciences, Département de Mathématiques, Université de Bretagne Occidentale, Avenue Le Gorgeu, BP 809, F- 29285 BREST},
author = {Regbaoui, Rachid},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Strong unique continuation for second order elliptic differential operators},
url = {http://eudml.org/doc/10930},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Regbaoui, Rachid
TI - Strong unique continuation for second order elliptic differential operators
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/10930
ER -

References

top
  1. S. ALINHAC, Non-unicite pour des operateurs differentiels a caracteristiques complexes simples , Ann. Sci. E.N.S. 13 (1980), 385-393. Zbl0456.35002MR597745
  2. S. ALINHAC and M.S. BAOUENDI, A counterexample to strong uniqueness for partial differential equations of Schrödinger’s type, Comm. Partial Differential Equations. 19 (1994) , 1727-1733. Zbl0806.35023
  3. L. HÖRMANDER, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations. 8(1) (1983), 21-64. Zbl0546.35023MR686819
  4. L. HÖRMANDER , “The Analysis of Linear Partial Differential Operators III”, Vol.3 , Springer-Verlag , Berlin/New York , 1985. Zbl0601.35001
  5. A. PLIS, On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. Acad. Pol. Sci. 11 (1963), 95-100. Zbl0107.07901MR153959
  6. T.WOLFF, A counterexample in a Unique Continuation problem, Comm. Anal. geom. Vol.2 (1) (1994) , 79-102. Zbl0836.35023MR1312679

NotesEmbed ?

top

You must be logged in to post comments.