Strong unique continuation for second order elliptic differential operators

Rachid Regbaoui[1]

  • [1] Faculté des Sciences, Département de Mathématiques, Université de Bretagne Occidentale, Avenue Le Gorgeu, BP 809, F- 29285 BREST

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-15

How to cite

top

Regbaoui, Rachid. "Strong unique continuation for second order elliptic differential operators." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-15. <http://eudml.org/doc/10930>.

@article{Regbaoui1996-1997,
affiliation = {Faculté des Sciences, Département de Mathématiques, Université de Bretagne Occidentale, Avenue Le Gorgeu, BP 809, F- 29285 BREST},
author = {Regbaoui, Rachid},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Strong unique continuation for second order elliptic differential operators},
url = {http://eudml.org/doc/10930},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Regbaoui, Rachid
TI - Strong unique continuation for second order elliptic differential operators
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 15
LA - eng
UR - http://eudml.org/doc/10930
ER -

References

top
  1. S. ALINHAC, Non-unicite pour des operateurs differentiels a caracteristiques complexes simples , Ann. Sci. E.N.S. 13 (1980), 385-393. Zbl0456.35002MR597745
  2. S. ALINHAC and M.S. BAOUENDI, A counterexample to strong uniqueness for partial differential equations of Schrödinger’s type, Comm. Partial Differential Equations. 19 (1994) , 1727-1733. Zbl0806.35023
  3. L. HÖRMANDER, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations. 8(1) (1983), 21-64. Zbl0546.35023MR686819
  4. L. HÖRMANDER , “The Analysis of Linear Partial Differential Operators III”, Vol.3 , Springer-Verlag , Berlin/New York , 1985. Zbl0601.35001
  5. A. PLIS, On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. Acad. Pol. Sci. 11 (1963), 95-100. Zbl0107.07901MR153959
  6. T.WOLFF, A counterexample in a Unique Continuation problem, Comm. Anal. geom. Vol.2 (1) (1994) , 79-102. Zbl0836.35023MR1312679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.