Le problème de Yamabe sur des sous domaines de S n

Frank Pacard[1]

  • [1] Université Paris XII

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-14

How to cite

top

Pacard, Frank. "Le problème de Yamabe sur des sous domaines de $S^n$." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-14. <http://eudml.org/doc/10935>.

@article{Pacard1996-1997,
affiliation = {Université Paris XII},
author = {Pacard, Frank},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Yamabe problem; sectional curvature; conformal change of a metric},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Le problème de Yamabe sur des sous domaines de $S^n$},
url = {http://eudml.org/doc/10935},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Pacard, Frank
TI - Le problème de Yamabe sur des sous domaines de $S^n$
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 14
LA - eng
KW - Yamabe problem; sectional curvature; conformal change of a metric
UR - http://eudml.org/doc/10935
ER -

References

top
  1. L.A. Caffarelli, B. Gidas et J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42, (1989), 271-297. Zbl0702.35085MR982351
  2. P. Delanoë, Generalized stereographic projection with prescribed scalar curvature, Contemporary Mathematics : Geometry, Physics and Nonlinear PDE, V. Oliker et A. Treibergs edts. AMS (1990). Zbl0770.53027MR1155406
  3. D. Finn Positive solutions of Δ g u = u q + S u singular at submanifolds with boundary, Indiana Univ. Math. J., 43 (1994), 1359-1397. Zbl0830.35035MR1322624
  4. D. Finn On the negative case of the singular Yamabe problem, MSRI dg-ga server, preprint (1996). MR1760721
  5. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics. 68, (1979), 209-243. Zbl0425.35020MR544879
  6. N. Korevaar, R. Mazzeo, F. Pacard et R. Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Preprint (1997). Zbl0958.53032MR1666838
  7. C. Loewner et L. Nirenberg, Partial differential equations invariants under conformal or projective transformations. Contributions to Analysis. Acad. Press N.Y. (1974) 245-272. Zbl0298.35018MR358078
  8. X. Ma et R. Mc Owen, Complete conformal metric with zero scalar curvature in Riemannian Manifolds Comm. P.D.E. 
  9. R. Mazzeo, Regularity for the singular Yamabe equation, Indiana Univ. Math. J. 40 (1991), 1277-1299. Zbl0770.53032MR1142715
  10. R. Mazzeo et F. Pacard, A new construction of singular solutions for a semilinear elliptic equation using asymptotic analysis J. Diff. Geom. 44, (1996), 331-370. Zbl0869.35040MR1425579
  11. R. Mazzeo et F. Pacard, Constant scalar curvature metrics with isolated singularities MSRI dg-ga server, preprint (1996) MR1712628
  12. R. Mazzeo, D. Pollack et K. Uhlenbeck. Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 92, (1996), 303-344. Zbl0849.58012MR1356375
  13. R. Mazzeo, D. Pollack et K. Uhlenbeck. Connected sum constructions for constant scalar curvature metrics To appear, Top. Methods Nonlin. Anal. 6, (1995), 207-233. Zbl0866.58069MR1399537
  14. R. Mazzeo et N. Smale, Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Diff. Geom. 34 (1991), 581-621. Zbl0759.53029MR1139641
  15. F. Pacard, The Yamabe problem on subdomains of even dimensional spheres, Top. Methods Nonlin. Anal. 6, (1995), 137-150. Zbl0854.53037MR1391949
  16. D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of S n , Indiana Univ. Math. J. 42, (1993), 1441-1456. Zbl0794.53025MR1266101
  17. R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation Comm. Pure and Appl. Math. XLI, (1988), 317-392. Zbl0674.35027MR929283
  18. R. Schoen et S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92, (1988), 47-72. Zbl0658.53038MR931204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.