# Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.

Yu E. Karpeshina; J. R. McLaughlin

Séminaire Équations aux dérivées partielles (1997-1998)

- Volume: 1997-1998, page 1-9

## Access Full Article

top## Abstract

top## How to cite

topKarpeshina, Yu E., and McLaughlin, J. R.. "Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-9. <http://eudml.org/doc/10946>.

@article{Karpeshina1997-1998,

abstract = {The operator $-\Delta +q$ with the Dirichlet boundary condition is considered in a parallelepiped. The problem of restoring $q(x)$ from positions of nodal surfaces is solved.},

author = {Karpeshina, Yu E., McLaughlin, J. R.},

journal = {Séminaire Équations aux dérivées partielles},

keywords = {zeros of eigenfunctions; eigenvalues; homogeneous elastic medium; nodal surfaces; Dirichlet boundary condition},

language = {eng},

pages = {1-9},

publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.},

url = {http://eudml.org/doc/10946},

volume = {1997-1998},

year = {1997-1998},

}

TY - JOUR

AU - Karpeshina, Yu E.

AU - McLaughlin, J. R.

TI - Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.

JO - Séminaire Équations aux dérivées partielles

PY - 1997-1998

PB - Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 1997-1998

SP - 1

EP - 9

AB - The operator $-\Delta +q$ with the Dirichlet boundary condition is considered in a parallelepiped. The problem of restoring $q(x)$ from positions of nodal surfaces is solved.

LA - eng

KW - zeros of eigenfunctions; eigenvalues; homogeneous elastic medium; nodal surfaces; Dirichlet boundary condition

UR - http://eudml.org/doc/10946

ER -

## References

top- O.H. Hald, J.R. McLaughlin Inverse Nodal problems: Finding the Potential from Nodal lines. Memoirs of the AMS, 119, # 572, 1997, 148 pp. Zbl0859.35136MR1370425
- Yu. E. Karpeshina Perturbation theory for the Schrödinger operator with a periodic potential, in series “Lecture Notes in Mathematics", # 1663, Springer-Verlag, 1997, 352 pp. Zbl0883.35002

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.