Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.
Yu E. Karpeshina; J. R. McLaughlin
Séminaire Équations aux dérivées partielles (1997-1998)
- Volume: 1997-1998, page 1-9
Access Full Article
topAbstract
topHow to cite
topKarpeshina, Yu E., and McLaughlin, J. R.. "Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-9. <http://eudml.org/doc/10946>.
@article{Karpeshina1997-1998,
abstract = {The operator $-\Delta +q$ with the Dirichlet boundary condition is considered in a parallelepiped. The problem of restoring $q(x)$ from positions of nodal surfaces is solved.},
author = {Karpeshina, Yu E., McLaughlin, J. R.},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {zeros of eigenfunctions; eigenvalues; homogeneous elastic medium; nodal surfaces; Dirichlet boundary condition},
language = {eng},
pages = {1-9},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.},
url = {http://eudml.org/doc/10946},
volume = {1997-1998},
year = {1997-1998},
}
TY - JOUR
AU - Karpeshina, Yu E.
AU - McLaughlin, J. R.
TI - Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 9
AB - The operator $-\Delta +q$ with the Dirichlet boundary condition is considered in a parallelepiped. The problem of restoring $q(x)$ from positions of nodal surfaces is solved.
LA - eng
KW - zeros of eigenfunctions; eigenvalues; homogeneous elastic medium; nodal surfaces; Dirichlet boundary condition
UR - http://eudml.org/doc/10946
ER -
References
top- O.H. Hald, J.R. McLaughlin Inverse Nodal problems: Finding the Potential from Nodal lines. Memoirs of the AMS, 119, # 572, 1997, 148 pp. Zbl0859.35136MR1370425
- Yu. E. Karpeshina Perturbation theory for the Schrödinger operator with a periodic potential, in series “Lecture Notes in Mathematics", # 1663, Springer-Verlag, 1997, 352 pp. Zbl0883.35002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.