On the algebraic properties of the spaces
Sergiu Klainerman[1]; Matei Machedon[1]
- [1] Department of Mathematics, Princeton University, University of Maryland
Séminaire Équations aux dérivées partielles (1997-1998)
- Volume: 1997-1998, page 1-9
Access Full Article
topAbstract
topHow to cite
topKlainerman, Sergiu, and Machedon, Matei. "On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces." Séminaire Équations aux dérivées partielles 1997-1998 (1997-1998): 1-9. <http://eudml.org/doc/10957>.
@article{Klainerman1997-1998,
abstract = {We investigate the multiplicative properties of the spaces $H^\{\frac\{n\}\{2\}, \frac\{1\}\{2\}\} $ As in the case of the classical Sobolev spaces $H^\frac\{n\}\{2\}$ this space does not form an algebra. We investigate instead the space $H^\frac\{n\}\{2\}\cap L^\infty $ , more precisely a subspace of it formed by products of solutions of the homogeneous wave equation with data in $H^\{\frac\{n\}\{2\}\}$.},
affiliation = {Department of Mathematics, Princeton University, University of Maryland; Department of Mathematics, Princeton University, University of Maryland},
author = {Klainerman, Sergiu, Machedon, Matei},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-9},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the algebraic properties of the $H_\{\frac\{n\}\{2\},\{\frac\{1\}\{2\}\}\}$ spaces},
url = {http://eudml.org/doc/10957},
volume = {1997-1998},
year = {1997-1998},
}
TY - JOUR
AU - Klainerman, Sergiu
AU - Machedon, Matei
TI - On the algebraic properties of the $H_{\frac{n}{2},{\frac{1}{2}}}$ spaces
JO - Séminaire Équations aux dérivées partielles
PY - 1997-1998
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1997-1998
SP - 1
EP - 9
AB - We investigate the multiplicative properties of the spaces $H^{\frac{n}{2}, \frac{1}{2}} $ As in the case of the classical Sobolev spaces $H^\frac{n}{2}$ this space does not form an algebra. We investigate instead the space $H^\frac{n}{2}\cap L^\infty $ , more precisely a subspace of it formed by products of solutions of the homogeneous wave equation with data in $H^{\frac{n}{2}}$.
LA - eng
UR - http://eudml.org/doc/10957
ER -
References
top- J. Bourgain,Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, I, II GAFA 3(1993), 107-156, 209-262. Zbl0787.35098MR1215780
- Jean-Yves Chemin , Fluides Parfaits Incompressible. Asterix 230 , 1995 Zbl0829.76003MR1340046
- M. Escobedo and L Vega, A semilinear Dirac equation in for , SIAM J. Math anal. vol 28, no 2, 338-362, March 1997 Zbl0877.35028MR1434039
- S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math46(1993), 1221-1268 Zbl0803.35095MR1231427
- S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math J. 81 (1995), 99-103 Zbl0909.35094MR1381973
- S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of Wave Maps type, Comm.P.D.E22 (5-6), 901-918(1997). Zbl0884.35102MR1452172
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.