Champs de spin 3 / 2 et relativité générale

Jean-Philippe Nicolas[1]

  • [1] CMAT, Ecole Polytechnique, 91128 Palaiseau Cedex ou MAB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-14

How to cite


Nicolas, Jean-Philippe. "Champs de spin $\mathbf{3/2}$ et relativité générale." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-14. <>.

affiliation = {CMAT, Ecole Polytechnique, 91128 Palaiseau Cedex ou MAB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex},
author = {Nicolas, Jean-Philippe},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {spinor},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Champs de spin $\mathbf\{3/2\}$ et relativité générale},
url = {},
volume = {1998-1999},
year = {1998-1999},

AU - Nicolas, Jean-Philippe
TI - Champs de spin $\mathbf{3/2}$ et relativité générale
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 14
LA - fre
KW - spinor
UR -
ER -


  1. H.A. Buchdahl, (1958) On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field, Nuovo Cim. 10, pp. 96-103. Zbl0082.22005MR101150
  2. F. Cagnac, Y. Choquet-Bruhat, N. Noutchegueme, (1987) Solutions of the Einstein equations with data at past infinity, 7th Italian conference on general relativity and gravitational physics (Rapallo, 1986), 35–54, World Sci. Publishing, Singapore. MR892547
  3. Y. Choquet-Bruhat, (1985), Causalité des théories de supergravité, Société Mathématique de France, Astérisque, Hors Série, p. 79-93. Zbl0604.53047MR837195
  4. Y. Choquet-Bruhat, D. Christodoulou, (1981) Elliptic problems in H s , δ spaces on manifolds which are euclidian at infinity, Acta Math., 146, pp. 129-150. Zbl0484.58028MR594629
  5. Y. Choquet-Bruhat, D. Christodoulou, M. Francaviglia, (1979) On the wave equation in curved spacetime, Ann. Inst. henri Poincaré, 31, 4, p. 399-414. Zbl0454.58016MR574143
  6. D. Christodoulou, S. Klainerman, (1993) The global nonlinear stability of the Minkowski space, Princeton Mathematical series 41, Princeton University Press. Zbl0827.53055MR1316662
  7. P.T. Chruściel, (1993) On completeness of orbits of Killing vector fields, Classical Quantum Gravity 10, No.10, 2091-2101. Zbl0807.53057MR1242398
  8. P.A.M. Dirac, (1928) The quantum theory of the electron, Proc. Roy. Soc., Part I  : A117, p. 610-624, Part II  : A118, p. 351-361. Zbl54.0973.01
  9. P.A.M. Dirac, (1936) Relativistic wave equations, Proc. Roy. Soc. A155, pp. 447-449. Zbl0014.42304
  10. M. Fierz and W. Pauli, (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. A173, pp. 211-232. Zbl0023.43004MR1173
  11. R.P. Geroch, (1968) Spinor structure of space-times in general relativity, Part I : J. Math. Phys. 9, Part II : J. Math. Phys. 11. Zbl0165.29402
  12. R.P. Geroch, (1970) The domain of dependence, J. Math. Phys., 11, pp. 437-439. Zbl0189.27602MR270697
  13. T. Kato, (1970) Linear equations of “hyperbolic” type, Part I : J. Fac. Sc. Univ. Tokyo, 17, p. 241-258, Part II : J. Math. Soc. Japan, 25, p. 648-666. Zbl0262.34048
  14. T. Kato, (1975) The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58, p. 181-205. Zbl0343.35056MR390516
  15. L.J. Mason, J.-P. Nicolas, Global results for the Rarita-Schwinger equations and Einstein vacuum equations, à paraître dans Proc. London Math. Soc. Zbl1065.83046
  16. L.J. Mason and R. Penrose, (1994) Spin 3 / 2 fields and local twistors, Twistor Newsletter 37, p. 1-6. 
  17. J.-P. Nicolas, (1997) Global exterior Cauchy problem for spin 3/2 zero rest-mass fields in the Schwarzchild space-time, Commun. in PDE, 22, 3&4, 465-502. Zbl0878.35115MR1443046
  18. T. Parker, C.H. Taubes, (1982) On Witten’s proof of the positive energy theorem, Comm. Math. Phys., 84, 223-238. Zbl0528.58040
  19. R. Penrose, (1965) Zero rest-mass fields including gravitation  : asymptotic behavior, Proc. Roy. Soc. A284, pp. 159-203. Zbl0129.41202MR175590
  20. R. Penrose, (1991) Twistors as spin 3 / 2 charges, Gravitation and modern cosmology, Eds. A. Zichichi, N. de Sabbata and N. Sánchez, Plenum Press, New York, pp. 129-137. MR1211704
  21. R. Penrose, W. Rindler, (1984 & 1986) Spinors and space-time, Vol. I & II, Cambridge monographs on mathematical physics, Cambridge University Press. Zbl0591.53002
  22. W. Rarita and J. Schwinger, (1941) On a theory of particles with half-integer spin, Phys. Rev. 60, pp. 61. Zbl0026.28704
  23. A. Sen, (1982) Quantum Theory of Spin 3 / 2 Field in Einstein Spaces, Internat. J. Theoretical Physics, 21, 1, 1-35. MR645266
  24. E. Witten, (1981) A new proof of the positive energy theorem, Commun. Math. Physics 80, 381-402. Zbl1051.83532MR626707

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.