Un analogue du théorème de Borel-Weil-Bott dans le cas non compact

Gérard Schiffmann

Séminaire Bourbaki (1970-1971)

  • Volume: 13, page 323-336
  • ISSN: 0303-1179

How to cite

top

Schiffmann, Gérard. "Un analogue du théorème de Borel-Weil-Bott dans le cas non compact." Séminaire Bourbaki 13 (1970-1971): 323-336. <http://eudml.org/doc/109802>.

@article{Schiffmann1970-1971,
author = {Schiffmann, Gérard},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {323-336},
publisher = {Springer-Verlag},
title = {Un analogue du théorème de Borel-Weil-Bott dans le cas non compact},
url = {http://eudml.org/doc/109802},
volume = {13},
year = {1970-1971},
}

TY - JOUR
AU - Schiffmann, Gérard
TI - Un analogue du théorème de Borel-Weil-Bott dans le cas non compact
JO - Séminaire Bourbaki
PY - 1970-1971
PB - Springer-Verlag
VL - 13
SP - 323
EP - 336
LA - fre
UR - http://eudml.org/doc/109802
ER -

References

top
  1. [1] A. Andreotti et E. Vesentini ,Carleman estimates for the Laplace-Beltrami equations on complex manifolds , Inst. Hautes Etudes Sci. Publ.Math.25 (1965 ) ,313-362 . Zbl0138.06604MR175148
  2. [2] M.F. Atiyah et I.M. Singer- The index of elliptic operators III, Ann.of Math.87 ,(1968) ,546-604 . Zbl0164.24301MR236952
  3. [3] A. Borel ,Compact Clifford-Klein forms of symmetric spaces ,Topology2 (1963) ,111-122 . Zbl0116.38603MR146301
  4. [4] P. Griffiths et W. Schmid ,Locally homogeneous complex manifolds ,Acta Math. Zbl0209.25701MR259958
  5. [5] Harish- Chandra ,Representations of semi-simple Lie groups IV ,V ,VIAmer. J. Math.77 (1955) ,743-777 , 78 (1956) ,1-41 et 564-628 . Zbl0066.35603
  6. [6] Harish- Chandra ,Discrete series II ,Acta .Math.116 (1966) ,1-111 . Zbl0199.20102MR219666
  7. [7] Hirzebruch F. ,Automorphe Formen und der Satz von Riemann-Roch ,in Symp. Intern. Top. Alg. 1956 ,129-144 ,Universidad de Mexico1958 . Zbl0129.29801MR103280
  8. [8] R. Hotta. , on a realization of the discrete series for semi-simple Lie groups ,à paraitre . Zbl0213.13701
  9. [9] B. Kostant ,Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. ,74 (1961) ,329-387 . Zbl0134.03501MR142696
  10. [10] R.P. Langlands ,The dimension of spaces of automorphic forms ,Amer.J.Math.85 (1963) ,99-125 . Zbl0113.25802MR156362
  11. [11] R.P. Langlands ,Dimension of spaces of automorphic forms ,in algebraic groups and discontinuous subgroups ,Proc. of Symposia in Pure Math. vol IX ,Amer. Math. Soc.Providence R.I. (1966) . Zbl0215.11802MR212135
  12. [12] M.S. Narasimhan et K. Okamoto ,An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of the non compact type ,Ann. of Math. Zbl0257.22013
  13. [13] K. Okamoto ,on induced representations , Osaka J.Math.4 (1967) ,85-94 Zbl0172.18407MR225929
  14. [14] K. Okamoto et H. Ozeki ,on square integrable -cohomology spaces attached to hermitian symmetric spaces ,Osaka J.Math. (1967) 95-110 . Zbl0173.23702MR229260
  15. [15] R. Parthasarathy ,Dirac operators and the discrete series ,à paraitre Zbl0249.22003
  16. [16] R. Parthasarathy ,A note on the vanishing of certain L2-cohomologies , Zbl0215.40703
  17. [17] W. Schmid ,Homogeneous complex manifolds and representations of semi-simple groups , non publié (thèse ,Berkeley1967 ). 
  18. [18] W. Schmid ,Homogeneous complex manifolds and representations of semi-simple Lie groups ,Proc. Nat.Acad. Sci. U.S.A.59 (1968) ,56-59 . Zbl0164.15803MR225930
  19. [19] W. Schmid ,On a conjecture of Langlands ,Annals of Math.1971 . Zbl0291.43013MR286942
  20. [20] W. Schmid ,Some properties of square integrable representations of semi-simple Lie groups ,à paraitre . Zbl0347.22011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.