The rational homotopy theory of smooth, complex projective varieties
Séminaire Bourbaki (1975-1976)
- Volume: 18, page 69-80
- ISSN: 0303-1179
Access Full Article
topHow to cite
topMorgan, John W.. "The rational homotopy theory of smooth, complex projective varieties." Séminaire Bourbaki 18 (1975-1976): 69-80. <http://eudml.org/doc/109892>.
@article{Morgan1975-1976,
author = {Morgan, John W.},
journal = {Séminaire Bourbaki},
language = {eng},
pages = {69-80},
publisher = {Springer-Verlag},
title = {The rational homotopy theory of smooth, complex projective varieties},
url = {http://eudml.org/doc/109892},
volume = {18},
year = {1975-1976},
}
TY - JOUR
AU - Morgan, John W.
TI - The rational homotopy theory of smooth, complex projective varieties
JO - Séminaire Bourbaki
PY - 1975-1976
PB - Springer-Verlag
VL - 18
SP - 69
EP - 80
LA - eng
UR - http://eudml.org/doc/109892
ER -
References
top- [1] P. Deligne, Théorie de Hodge mixte, II, Publ. Math. IHES40 (1971), 5-57. Zbl0219.14007MR498551
- [2] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Inventiones29 (1975), 245-274; Zbl0312.55011MR382702
- [3] A. Fröhlicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA41 (1955), 641-644. Zbl0065.16502MR73262
- [4] W.V.D. Hodge, The Theory and Application of Harmonic Integrals", Cambridge University Press, Cambridge, G.B., 2nd edition 1959. Zbl0048.15702
- [5] J. Morgan, The homotopy theory of open, smooth, varieties, (to appear)
- [6] D. Sullivan, Infinitesimal calculations in topology, (to appear) Ann. of Math. Zbl0374.57002MR2131009
- [7] A. Weil, "L'Introduction à l'Etude des Variétés kählerienne", Hermann, Paris, 1958.
- [8] R. Wells, Jr., "Differential Analysis on Complex Manifolds", Printice-Hall, Englewod Cliffs, N.J., 1973. Zbl0262.32005MR515872
- [9] A. Bousfield and D. Kan, "Homotopy limits, completions, and localizations", Lecture Notes in Mathematics304, Berlin-Heidelberg-New York, Springer, 1972. Zbl0259.55004MR365573
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.